CHEM 3303 - Supplementary Problems - Part 5

Isodesmic Equations

Question 1

a. SbCl3 + F2 → SbF3 + Cl2

Balanced Equation: 2SbCl3 + 3F2 → 2SbF3 + 3Cl2

ΔH = 6(Sb(III)-Cl) + 3(F-F) - 6(Sb(III)-F) - 3(Cl-Cl)

ΔH = 6(315) + 3(155) - 6(440) - 3(240) = -1005 kJ mol-1

∴ The products are more thermodynamically stable than the reactants


b. P(CH3)3 + S8 → S=P(CH3)3

Balanced Equation: 8P(CH3)3 + S8 → 8S=P(CH3)3

ΔH = 24(P-C) + 72(C-H) + 8(S-S) - 24(P-C) - 72(C-H) - 8(P=S)

ΔH = 24(P-C) + 72(C-H) + 8(S-S) - 24(P-C) - 72(C-H) - 8(P=S)

ΔH = 8(S-S) - 8(P=S) = -872 kJ mol-1

ΔH = 8(226) - 8(335) = -872 kJ mol-1

∴ The products are more thermodynamically stable than the reactants


c. H2CO3 → CO2 + H2O

Balanced Equation: H2CO3 → CO2 + H2O

ΔH = 1(C=O) + 2(C-O) + 2(O-H) - 2(C=O) - 2(O-H)

ΔH = 1(C=O) + 2(C-O) + 2(O-H) - 2(C=O) - 2(O-H)

ΔH = 2(C-O) - 1(C=O)

ΔH = 2(358) - 1(799) = -83 kJ mol-1

∴ The products are more thermodynamically stable than the reactants


Question 2

a. P4 + Cl2 → PCl3 or PCl5 ?

Balanced Equation 1: P4 + 6Cl2 → 4PCl3

ΔH = 6(P-P) + 6(Cl-Cl) - 12(P(III)-Cl)

ΔH = 6(201) + 6(240) - 12(326) = -1266 kJ mol-1

Balanced Equation 2: P4 + 10Cl2 → 4PCl5

ΔH = 6(P-P) + 10(Cl-Cl) - 20(P(V)-Cl)

ΔH = 6(201) + 10(240) - 20(258) = -1554 kJ mol-1

∴ PCl5 is the expected product


b. HCCH + Br2 → HBrCCBrH or HBr2CCBr2H ?

Balanced Equation 1: HCCH + Br2 → HBrCCBrH

ΔH = 1(C≡C) + 2(C-H) + 1(Br-Br) - 1(C=C) - 2(C-H) - 2(C-Br)

ΔH = 1(C≡C) + 2(C-H) + 1(Br-Br) - 1(C=C) - 2(C-H) - 2(C-Br)

ΔH = 1(C≡C) + 1(Br-Br) - 1(C=C) - 2(C-Br)

ΔH = 1(835) + 1(190) - 1(602) - 2(285) = -147 kJ mol-1

Balanced Equation 2: HCCH + Br2 → HBr2CCBr2H

ΔH = 1(C≡C) + 2(C-H) + 2(Br-Br) - 1(C-C) - 2(C-H) - 4(C-Br)

ΔH = 1(C≡C) + 2(C-H) + 2(Br-Br) - 1(C-C) - 2(C-H) - 4(C-Br)

ΔH = 1(C≡C) + 2(Br-Br) - 1(C-C) - 4(C-Br)

ΔH = 1(835) + 2(190) - 1(346) - 4(285) = -271 kJ mol-1

∴ HBr2CCBr2H is the expected product


c. CN- + O2 → OCN- or CNO- (linear) ?

Balanced Equation 1: CN- + ½O2 → OCN-

ΔH = 1(C≡N) + ½(O=O) - 1(C=O) - 1(C=N)

ΔH = 1(887) + ½(494) - 1(799) - 1(615) = -280 kJ mol-1

Balanced Equation 2: CN- + ½O2 → CNO- (linear) ?

ΔH = 1(C≡N) + ½(O=O) - 1(C≡N) - 1(N-O)

ΔH = 1(C≡N) + ½(O=O) - 1(C≡N) - 1(N-O)

ΔH = ½(O=O) - 1(N-O)

ΔH = ½(494) - 1(222) = +25 kJ mol-1

∴ OCN- is the expected product


CGMT Theory

Question 1

a. H2CCH2

Eσ+π = 346 + 295 = 641 kJ mol-1
ΣΔEs→t = 2(-38) = -76 kJ mol-1
2ΣΔEs→t = -152 kJ mol-1

Since Eσ+π > 2ΣΔEs→t, a planar geometry would be expected.


b. H2SiSiH2

Eσ+π = 222 + 120 = 346 kJ mol-1
ΣΔEs→t = 2(88) = 176 kJ mol-1
2ΣΔEs→t = 352 kJ mol-1

Since Eσ+π < 2ΣΔEs→t, a trans-bent geometry would be expected.


c. H2CSiH2

Eσ+π = 300 + 139 = 439 kJ mol-1
ΣΔEs→t = -38 + 88 = 50 kJ mol-1
2ΣΔEs→t = 100 kJ mol-1

Since Eσ+π > 2ΣΔEs→t, a planar geometry would be expected.