## ERRATA

## 3. Review of Theory

## 1. Note:

In equation (3.4.15), $\quad T_{s}=\frac{I_{s 2}^{t}}{I_{s 1}^{t}}=\frac{\operatorname{Re}\left(\xi_{2}\right)}{\xi_{1}}\left|t_{s}\right|^{2}$
$t_{s}$ denotes the ratio of the amplitudes of the electric fields determined using equation (3.4.10).

In equation (3.4.16), $T_{p}=\frac{\operatorname{Re}\left(\xi_{2} / \hat{n}_{2}^{2}\right)}{\xi_{1} / \hat{n}_{1}^{2}}\left|t_{p}\right|^{2}$
$t_{p}$ denotes the ratio of the amplitudes of the magnetic fields determined using equation (3.4.12). Since typically it is important to determine the phase shift of the electric fields, equation (3.4.17) should be written as:

$$
\delta_{s}^{t}=\operatorname{Arg}\left(t_{s}\right) \text { and } \quad \delta_{p}^{t}=\operatorname{Arg}\left(\frac{n_{1}}{\hat{n}_{f}} t_{p}\right)
$$

where $t_{s}$ and $t_{p}$ are the quantities determined using equation (3.4.10) and (3.4.12) respectively. The ratio of the refractive indices of the first $\left(n_{l}\right)$ and the last phase $\left(n_{f}\right)$ is used to convert the $t_{p}$ expressed as the ratio of the magnetic field amplitudes to the $t_{p}$ expressed as the ratio of the electric field amplitudes.

## 2. Error:

Equation (3.4.33)

$$
\left[\begin{array}{c}
U_{1} \\
V_{1}
\end{array}\right]=\left[\begin{array}{c}
H_{y 1} \\
E_{x 1}
\end{array}\right]=\left[\begin{array}{c}
H_{y 1}^{t}+H_{y 1}^{r} \\
E_{x 1}^{t}+E_{x 1}^{r}
\end{array}\right]=\left[\begin{array}{c}
1+r_{p} \\
\frac{\xi_{1}}{n_{1}^{2}}\left(1-r_{p}\right)
\end{array}\right] H_{y 1}^{t}=\left[\begin{array}{c}
n_{1}\left(1+r_{p}\right) \\
\frac{\xi_{1}}{n_{1}^{2}}\left(1-r_{p}\right)
\end{array}\right] E_{x 1}^{t}
$$

should be written as

$$
\left[\begin{array}{c}
U_{1} \\
V_{1}
\end{array}\right]=\left[\begin{array}{c}
H_{y 1} \\
E_{x 1}
\end{array}\right]=\left[\begin{array}{c}
H_{y 1}^{t}+H_{y 1}^{r} \\
E_{x 1}^{t}+E_{x 1}^{r}
\end{array}\right]=\left[\begin{array}{c}
1+r_{p} \\
\frac{\xi_{1}}{n_{1}}\left(1-r_{p}\right)
\end{array}\right] H_{y 1}^{t}=\left[\begin{array}{c}
n_{1}\left(1+r_{p}\right) \\
\frac{\xi_{1}}{n_{1}}\left(1-r_{p}\right)
\end{array}\right] E_{x 1}^{t}
$$

## 3. Error:

Equation (3.4.36) $\quad\left\langle E_{x k}^{p^{2}}\right\rangle=\frac{1}{2}\left|U_{k}(z)\right|^{2}$
should be written as $\left\langle E_{x k}^{p^{2}}\right\rangle=\frac{1}{2}\left|V_{k}(z)\right|^{2}$

## 4. Error:

Equation (3.5.2)

$$
I_{D}(\varphi)=\frac{I_{s}+I_{p}}{2}+\frac{I_{s}-I_{p}}{2} \cos \varphi
$$

should be written as $\quad I_{D}(\varphi)=\frac{I_{s}+I_{p}}{2}+\frac{I_{p}-I_{s}}{2} \cos \varphi$

## 5. Error:

Equation (3.5.7) $\quad I_{D}(t)=\frac{I_{s}+I_{p}}{2}+\frac{I_{s}-I_{p}}{2} \cos \left(\frac{\lambda_{0}}{\lambda} \pi \cos \left(\omega_{m} t\right)\right)$
should be written as $I_{D}(t)=\frac{I_{s}+I_{p}}{2}+\frac{I_{p}-I_{s}}{2} \cos \left(\frac{\lambda_{0}}{\lambda} \pi \cos \left(\omega_{m} t\right)\right)$

## 6. Error:

Equation(3.5.10)

$$
I_{D}(t)=I_{S}+\frac{I_{s}-I_{p}}{2}\left\{1+\cos \left(\frac{\lambda_{0}}{\lambda} \pi\right)\right\}
$$

should be written as

$$
I_{D}(t)=I_{S}+\frac{I_{p}-I_{s}}{2}\left\{1+\cos \left(\frac{\lambda_{0}}{\lambda} \pi\right)\right\}
$$

## 7. Error:

Equation (3.5.13) $\left(\frac{\Delta I}{\langle I\rangle}\right)_{\text {Theor. }}=\frac{I_{s}-I_{p}}{\left(I_{s}+I_{p}\right) / 2}$
should be written as $\left(\frac{\Delta I}{\langle I\rangle}\right)_{\text {Theor. }}=\frac{I_{p}-I_{s}}{\left(I_{s}+I_{p}\right) / 2}$

## 8. Error:

Equation (5.3.8)

$$
n_{i}\left(\bar{v}_{0}\right)=n_{\infty}+\frac{2}{\pi} P \int_{\bar{v}_{1}}^{\bar{v}_{2}} \frac{\bar{v} k_{i}(\bar{v})}{\left(\bar{v}^{2}-\bar{v}_{0}\right)} d \bar{v}
$$

should be written as

$$
n_{i}\left(\bar{v}_{0}\right)=n_{\infty}+\frac{2}{\pi} P \int_{\bar{v}_{1}}^{\bar{v}_{2}} \frac{\bar{v} k_{i}(\bar{v})}{\left(\bar{v}^{2}-\bar{v}_{0}^{2}\right)} d \bar{v}
$$

