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Abstract: The graphics processing unit (GPU) has emerged as a power-
ful and cost effective processor for general performance computing. GPUs
are capable of an order of magnitude more floating-point operations per
second as compared to modern central processing units (CPUs), and thus
provide a great deal of promise for computationally intensive statistical
applications. Fitting complex statistical models with a large number of
parameters and/or for large datasets is often very computationally expen-
sive. In this study, we focus on Gaussian process (GP) models – statistical
models commonly used for emulating expensive computer simulators. We
demonstrate that the computational cost of implementing GP models can
be significantly reduced by using a CPU+GPU heterogeneous computing
system over an analogous implementation on a traditional computing sys-
tem with no GPU acceleration. Our small study suggests that GP models
are fertile ground for further implementation on CPU+GPU systems.

AMS 2000 subject classifications: Primary 62-04, 65Y05; secondary
60G15.
Keywords and phrases: Computer experiment, Matrix inversion, Paral-
lel programming.

1. Introduction

Driven by the need for realistic real time computer graphics applications, graph-
ics processing units (GPUs) now offer more computing power than central pro-
cessing units (CPUs). This is accomplished with a large number of (relatively
slow) processors that can simultaneously render complex 3D graphical applica-
tions by relying on parallelism. Modern GPUs can be programmed to execute
many of the same tasks as a CPU. For tasks with efficient (primarily float-
ing point) parallel implementations, GPUs have reduced execution time by an
order of magnitude or more (Brodtkorb et al. 2010). Additionally, GPUs are ex-
tremely cost effective; delivering far more floating point operations per second
(FLOPS) per dollar than multi-core CPUs. This provides a great deal of promise
for general purpose computing on graphics processing units (GPGPU), and in
particular for computationally intensive statistical applications (e.g., Zechner &
Granitzer (2009); Lee et al. (2009)).

In this note, we explore the merits of heterogeneous computing (CPU+GPU)
over traditional computing (CPU only) for fitting Gaussian process (GP) mod-
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els. GP models are popular supervised learning models (Rasmussen & Williams
2006), and are also used for emulating computer simulators which are too time
consuming to run for real-time predictions (Sacks et al. 1989). Fitting a GP
model with n simulator runs requires the determinant and inverse computation
of numerous n×n spatial correlation matrices. The computational costs of both
the determinant and inverse are O(n3), which become prohibitive for moder-
ate to large n. We demonstrate that for moderate to large datasets (thousands
of runs), the implementation on a heterogeneous system can be more than a
hundred times faster. The tremendous speed-ups were achieved by leveraging
NVIDIA’s compute unified device architecture (CUDA) toolkit (NVIDIA Cor-
poration 2010).

This note is intended as a “proof of concept” to demonstrate the tremendous
time savings that can be achieved for statistical simulations by using GPUs.
In particular we show that fitting GP models on a heterogeneous computing
platform leads to significant time savings as compared to our previous CPU-
only implementation.

The remainder of this note is organized as follows: Section 2 briefly reviews
the basic formulation of the GP model. We also highlight the computationally
intensive steps of the model fitting procedure in this section. Implementation
details for both platforms (CPU + GPU and CPU-only) are discussed in Sec-
tion 3. Comparisons are made via several simulations in Section 4, followed by
discussion in Section 5. It is clear from this study that the efficiency, affordabil-
ity, and pervasiveness of GPUs suggest that they should seriously be considered
for intensive statistical computation.

2. Gaussian Process Model

GP models are commonly used for regression in machine learning, geostatistics
and computer experiments. Here, we adopt terminology of computer experi-
ments (Sacks et al. 1989). Denote the i-th input and output of the computer
simulator by xi = (xi1, ..., xid), and yi = y(xi), respectively. The simulator
output, y(xi), is modeled as

y(xi) = µ+ z(xi); i = 1, ..., n, (1)

where µ is the overall mean, and z(xi) is a GP with E(z(xi)) = 0, V ar(z(xi)) =
σ2

z , and Cov(z(xi), z(xj)) = σ2

zRij . Although there are several choices for R
(Santner et al. 2003), we use the power exponential correlation family

Rij = corr(z(xi), z(xj)) =

d∏

k=1

exp {−θk|(xik − xjk)|
p} , for all i, j, (2)

where θ = (θ1, ..., θd) is the vector of hyper-parameters, and p ∈ (0, 2] is the
smoothness parameter. The squared exponential (p = 2) correlation function is
very popular and has good theoretical properties, however, the power exponen-
tial correlation function with p < 2 is more stable in terms of near-singularity
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of R (especially if the design points are very close, which can occur with large
n in small d - dimensional space). We used p = 1.95 for all illustrations in
this note (Kaufman et al. 2011). Alternatively, a suitably chosen nugget with
Gaussian correlation can be used (Ranjan et al. 2011) to avoid near-singularity.
One could also use another correlation structure like Matérn (Stein 1999, Sant-
ner et al. 2003), which is considered to be numerically more stable than power
exponential correlation.

We implemented the maximum likelihood approach for fitting the GP model,
which requires the estimation of the parameter vector (θ1, ..., θd;µ, σ

2

z). The
closed form estimators of µ and σ2

z are given by

µ̂(θ) = (1n

′R−11n)
−1

(1n

′R−1Y ) and σ̂2

z(θ) =
(Y − 1nµ̂(θ))

′R−1(Y − 1nµ̂(θ))

n
,

(3)
which are used to obtain the profile log-likelihood

−2 logLθ ∝ log(|R|) + n log[(Y − 1nµ̂(θ))
′R−1(Y − 1nµ̂(θ))], (4)

for estimating the hyper-parameters θ = (θ1, ..., θd), where |R| denotes the de-
terminant of R.

The evaluation of |R| and R−1(Y −1nµ̂(θ)) for different values of θ is compu-
tationally expensive. One can save some computation time and increase numer-
ical stability by using matrix factorization of R (e.g., using LU, QR or Cholesky
decomposition) along with solving the linear systems via back-solves to obtain
R−1(Y − 1nµ̂(θ)). From an implementation viewpoint, the log-likelihood (4)
consists of three computationally expensive components: (i) the evaluation of
R, (ii) the factorization of R and (iii) solving the linear systems via back-solves.
The computational cost for the matrix factorization and back-solves are O(n3)
and O(n2) respectively. Thus, the log-likelihood function evaluation is compu-
tationally expensive, specifically for large n.

The log-likelihood surface is sometimes bumpy near θ = 0 and often has
multiple local optima (Yuan et al. 2008, Schirru et al. 2011, Kalaitzis & Lawrence
2011, Petelin et al. 2011). This makes maximizing the likelihood challenging. For
instance, Figure 1 presents contours of −2 logLθ for a 30-point, two-dimesional
data set, where the inputs are generated using a maximin Latin hypercube
design (LHD) in [0, 1]2, and the computer simulator outputs are obtained by
evaluating the two-dimensional GoldPrice function (see Example 1 for more
details on this test simulator).

The log-likelihood surface in Figure 1 contains multiple local minima near
θ = 0. Though not very clear from Figure 1(b), more local minima are found by
enlarging the region near θ = 0. A good optimization algorithm that guarantees
the global optimum of such an objective function would require numerous func-
tion evaluations. Evolutionary algorithms like genetic algorithm (Ranjan et al.
2008, 2011) and particle swarm optimization (Petelin et al. 2011) are commonly
used for optimizing the log-likelihood of the GP models. A multi-start gradient
based optimization approach might be faster but would require careful selection
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(a) −2 logLθ surface for (θ1, θ2) ∈ (0, 12)2

θ1

θ 2

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

800

810

820

830

840

850

860

870

(b) −2 logLθ surface zoomed in near (θ1, θ2) = 0

Fig 1. Plots of −2 logLθ for the GoldPrice function (Example 1) with n = 30 points chosen
using a random maximin LHD.
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of the starting points to achieve the global minimum of −2 logLθ. Once a suffi-
ciently large number of starting points are chosen, a gradient based optimization
is also likely to involve a large number of evaluations of the likelihood.

The large number of likelihood evaluations, no matter what approach is taken
to search for the MLEs, means that efficient ways to evaluate the likelihood will
be very important.

3. Implementation of GP on CPUs and GPUs

In this section, we discuss the implementations of GP fitting algorithms in the
two computing environments. As in Ranjan et al. (2008, 2011), we use a genetic
algorithm (GA) for minimizing −2 logLθ. Other optimizers might use different
strategies, but all approaches require numerous evaluation of (4).

Our implementation of computing −2 logLθ requires one evaluation of R, one
Cholesky decomposition of R and seven back-solves involving the Cholesky fac-
tors. The version of GA implemented here for optimizing the log-likelihood uses
2000 evaluations of −2 logLθ. Thus, the GP model fitting procedure requires
2000 evaluations of R, 2000 Cholesky decompositions and 14000 back-solves.
Furthermore, the GP model predictions on a set of N test points are obtained
using the estimated parameters with one evaluation of R, one Cholesky decom-
position and 2N +6 back-solves. Thus, fitting a GP model and obtaining model
predictions are computationally expensive, and this paper advocates the use of
GPUs to reduce the computational burden.

The heterogeneous (CPU+GPU) workstation for this study includes two
moderately high-end consumer grade components each costing approximately
$200: a Intel Core i5 750 CPU and a NVIDIA GTX 260 (core 216) GPU. The
Intel CPU is capable of 4 flops per clock cycle × 4 cores × 2.66 gigaHertz per
core = 42.58 gigaFlops per cycle (Intel Corporation 2011). The NVIDIA GPU is
capable of 3 flops per clock cycle × 216 cores × 1.547 gigaHertz per core = 1002
gigaFlops per cycle (Barrachina et al. 2009), roughly 24 times more than the
Intel Core i5 processor. The workstation used for comparison is a dual-socket
quad-core AMD Opteron 2352 with 32 GB of RAM running Matlab version
R2009b. This hardware is slightly older, but is workstation class instead of con-
sumer class, has more RAM and twice as many CPU cores.

CPU implementation. Most personal computers available now have multi-
core processors. For example, the somewhat high-end consumer-grade AMD
FX-8120 has 8 cores. We used a dual-socket quad core AMD Opteron 2352
based workstation, giving 8 cores in total. The CPU implementation was written
in Matlab, making use of several built-in functions (e.g., matrix factorization
routines, backslash operator for back-solving linear systems) that are linked to
compiled high performance subroutines written in Fortran or C. The Cholesky
decomposition was used for computing both the determinant and the inverse
of R (via solving linear systems). The Matlab (CPU) code did not contain
specialized parallelization commands. However, the Matlab session used all 8
cores through its intermal math routines.
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CPU+GPU implementation. The most popular GPGPU platform is that
of a Intel or AMD x86 CPU and a Nvidia GPU. This is the platform that
was adopted for this study - an Intel core i5 750 quad core CPU and Nvidia
GTX 260 GPU. We used the Nvidia GPGPU software development kit (CUDA
2.3) to implement the Gaussian process model on this system. As part of that
implementation we rewrote our Matlab code in the C for CUDA programming
language to enable general purpose computation on the GPU. The free libraries
CUDA basic linear algebra subroutines (CUBLAS) (NVIDIA Corporation 2009)
and CULATools (EM Photonics and NVIDIA Corporation 2009) were used for
executing the most computationally expensive steps of the GP model on the
GPU. CULATools is a proprietary library with a free version that provides
popular linear algebra operations for NVIDIA GPUs. Because the Cholesky
decomposition routine was not part of the free CULATools library, the free
(but closed source) LU decomposition (culaDeviceSgetrf) was used instead.
Though we are not certain due to the proprietary nature of CULATools, we
believe the GPU LU decomposition is parallelized in a block-based manner
similar to the freely available SCALAPACK version for CPUs (Choi et al. 1992).

We explicitly used the GPU for evaluation of correlation matrix R using
a custom GPU kernel (C for CUDA function), LU decomposition of R (CU-
LATOOLS library), all linear algebraic operations including the back-solves
(CUBLAS library), and a few other custom C for CUDA functions in order to
minimize the transfer of data to and from the GPU. The computation of R re-
quires d ·n(n−1)/2 evaluations of −θk|(xik −xjk)|

1.95 all of which are mutually
independent and can be executed in parallel.

Note that no task parallelization (e.g., multiple evaluation of the likelihood at
different parameter values) was performed in this implementation. Evaluating
the likelihood for numerous parameters simultaneously seems a natural approach
to parallelizing a GP model, however this type of parallelism was not possible
because only one kernel could have been executed at a time. If we had access to
a more advanced GPU (e.g., GF100 series or newer), executing some of these
computationally intensive steps in a task parallel manner (using concurrent
kernel execution) could potentially lead to even more time savings.

To summarize, we used the GPU for all linear algebra operations and building
the correlation matrix R. The CPU was used for data input/output and process
control. Additional execution configurations could have been tuned to optimize
the performance of GPUs (Archuleta et al. 2009). However the aim of this
study is not to achieve the highest performance possible for these models and
procedures; but rather to explore the use of a GPU as a co-processor that can
lead to significant time savings at a reasonable cost.

4. Examples

In this section, we use simulated examples to compare the results obtained from
the two implementations of the GP model. Throughout this note, the CPU
implementation of the methodology in Matlab is referred to as CPU imple-
mentation and the mixed system (CPU + GPU) implementation (in C based
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language called CUDA) is referred to as CUDA implementation. Our CUDA
implementation enforces single precision floating-point arithmetic and uses LU
instead of Cholesky decomposition of the correlation matrices R.

For fair comparison of the results, both implementations used exactly the
same input data and the number of likelihood evaluations in the optimization
procedure. The design points, x = (x1, ..., xn), were generated using a maximin
Latin-hypercube scheme. For efficient distribution of the data to the processors
in the CUDA implementation, we used powers of 2 for n, however, other values
of n can also be considered in our implementations (e.g., we used n = 4064
in Example 2). Simulations with n > 4070 were not considered here because
of a restriction within the CUBLAS library (version 2.3). In the most recent
CUBLAS release (3.0) this restriction has been relaxed, allowing for much larger
matrices to be considered in future applications.

As pointed out in Sections 2 and 3, the challenge of effectively maximizing
the likelihood for a GP model leads to algorithms that repeatedly evaluate the
likelihood. In the examples considered in this section, a genetic algorithm with
20 generations and a population of 100 solutions leading to 2,000 likelihood
evaluations, was used.

Example 1. Suppose the emulator outputs are generated from the log of
the 2-dimensional Goldstein-Price function (Törn & Žilinskas 1979). Designs
of different sizes, n = 2k for k = 4, 5, ..., 9, were used to fit the GP model.
The reason for not using larger designs in this simulation study is discussed in
Section 5. Table 1 shows the parameter estimates, optimized value of −2 log(Lθ)

as in (4), sum of squared prediction error (SSPE =
∑

1000

i=1
(yi− ŷi)

2), and total
runtime of the code (i.e., fitting the GP model and computing SSPE). The SSPE
is calculated over a fixed test set, which is a maximin LHD chosen independent
to the design used for model fitting. Both CPU and CUDA implementations
used the same training and test datasets. A slight randomness (or variation)
in these performance measures is introduced due to the stochasticity of the
genetic algorithm used for optimizing the likelihood. To reduce the variation,
the results in Table 1 are averaged over ten simulations. For each replication
of the experiment a different design (training dataset for fitting the GP model)
was chosen.

It is clear from Table 1 that the optimized value of the profile log-likelihood
(−2 logLθ), µ̂, σ̂2

z and SSPE from the two implementations are comparable
within each sample size. The discrepancy between the results of these two imple-
mentations may be partially explained by the fact that single precision floating
point operations were used in CUDA as compared to double precision calcula-
tions in Matlab. See Section 5 for further discussion.

While the discrepancies in Table 1 suggest that single-precision arithmetic on
the GPU may not always yield exact optima, we stress that the most difficult
part of the likelihood optimization is finding the right neighbourhood of a good
optimum. Short double-precision runs on the CPU may be used to refine the
CUDA results.

The column “Time(sec)” in Table 1 shows that as n increases the CUDA
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Table 1

Simulation results for Goldstein-Price function, averaged over 10 replications.

CPU implementation
n Time(sec) −2logLθ µ̂ σ̂2

z SSPE
16 0.91 55.95 9.80 7.09 1158.89
32 3.30 130.98 9.36 5.19 860.47
64 12.90 286.46 9.47 5.31 219.73

128 51.45 541.83 9.58 4.77 131.87
256 206.18 1186.40 9.31 3.17 28.84
512 911.93 2287.88 9.41 4.91 11.91

CUDA implementation
n Time(sec) −2logLθ µ̂ σ̂2

z SSPE
16 2.26 56.85 9.83 7.19 1188.21
32 4.94 130.48 9.47 5.25 831.98
64 5.50 285.47 9.43 4.61 225.83

128 7.25 536.32 9.54 3.61 134.15
256 9.88 1207.87 9.54 4.73 40.56
512 20.75 2321.21 9.59 4.79 14.38

implementation significantly outperforms the CPU implementation. For n =
512, on average CPU implementation takes more than 15 minutes but CUDA
implementation requires roughly 21 seconds.

Example 2. Consider the 6-dimensional Hartman function (Törn & Žilinskas
1979) for generating the simulator outputs. Since the input space is six di-
mensional, we considered relatively large designs with n = 26, 28, 210 and 4064
(n > 4070 is not allowed due to CUBLAS restrictions) to fit the GP model,
and the SSPE was calculated over 1000 points chosen using a maximin LHD.
Table 2 summarizes the simulation results.

Table 2

Simulation results for Hartman function, averaged over 10 replications (except *, one
replication)

CPU implementation
n Time(s) −2logLθ µ̂ σ̂2

z SSPE
64 32.32 125.94 0.1771 0.1403 77.4160

256 514.43 610.25 0.1105 0.1164 27.4311
1024 13325.86 2491.97 0.0609 0.0970 5.6504
4064 *161925.05 *8044.80 *0.0485 *0.0824 *0.5320

CUDA implementation
n Time(s) −2logLθ µ̂ σ̂2

z SSPE
64 9.45 103.70 0.1238 0.2989 91.7860

256 16.58 547.10 0.1397 0.1746 31.4641
1024 96.19 2665.58 0.1192 0.1390 4.3850
4064 1059.71 8698.28 0.0803 0.0700 0.5314

Similar to Example 1, the results are averaged over 10 simulations. One ex-
ception is CPU with n = 4064: a single run took almost 45 hours, and thus we
did not perform 10 simulations. Table 2 shows that the CUDA implementation
achieves computation time savings of up to a factor of 150 (n = 4064).
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5. Discussion

This note illustrates that GPU parallelization can significantly reduce the com-
putational burden in fitting GP models. The largest improvements are evident
in the most difficult problems (e.g., from 45 hours to 18 minutes in Example 2,
n = 4064 case). These dramatic savings suggest that more complete implemen-
tations of GP models on GPU platforms deserve further study.

Although this article focuses on speedups due to hardware, there are other
approaches for estimation of GP models with large sample sizes. For instance,
ad-hoc methods have been proposed which modify the correlation function and
give sparse correlation matrices, facilitating faster computation of the inverses
and determinants (e.g., Furrer et al. (2006), Stein (2008)). However, it seems
quite plausible that efficiencies realized by a GPU+CPU approach would also
benefit these sparse approximations.

A number of design choices in the experiments merit commentary. In Example
1, the reason for not considering n = 210 or larger is that the correlation matrices
are near-singular. Although choice of the exponent in the correlation matrix
R, set at p = 1.95, substantially reduces the chance of getting near-singular
correlation matrices, this is still a problem for large n in the two-dimensional
problem. We did not want to further lower the value of p, as it would affect
the smoothness of the GP fit. Alternatively, a nugget based approach (Ranjan
et al. 2011) can be used to implement the GP model with large datasets. It
is expected that the runtime of the model fitting procedure would not change
significantly with p, except when the correlation matrix becomes sparse.

As noted in Section 4, MLEs obtained by the CPU+GPU implementation
differed somewhat from those found by the CPU implementation. A significant
reason for this is the use of single-precision arithmetic in the GPU code. These
estimates could be refined by a short run of double-precision CPU code. Since
this refinement might involve 10 or 20 likelihood evaluations, a small fraction
of the 2000 necesary to find a good solution, we have not included this effect in
our studies.

There are a number of specific functions for high-level software packages
like Matlab and R that leverage GPUs and can be used to improve existing
codes. For instance, our CPU implementation can be improved by using Jacket
(AccelerEyes 2011) and GPUlib (Tech-X Corporation 2011). This approach was
not taken for this study as GPUs were not available in our cluster, and Matlab
was not available on our heterogenous computing system. Similarly, GPUtools
is a library for GPU accelerated routines in R (Buckner et al. 2010).

Though not discussed here, it is possible to make use of more than one CPU
and as many as three or four GPUs in one application/system, if there are
available GPU slots. In fact, cutting edge research is currently being done using
multiple GPUs coupled by an extremely fast interconnect (Infiniband) (QLogic
Corporation 2011). Even more processing power can be achieved by creating a
cluster of CPU+GPU systems coupled over a network, like the second and fourth
fastest supercomputers in the world (as of June 2011), the Chinese Tianhe-1A
and Nebulae (Top500.org 2011). Developing algorithms to execute in paral-



Franey, Ranjan and Chipman/Gaussian Process Modeling using GPUs 10

lel across numerous processors is not a task that is frequently undertaken by
statisticians. However, parallel computing, GPU co-processing, and heteroge-
neous computing techniques can become popular in the near future for compu-
tationally intensive statistical computing applications because of the promise of
heterogeneous computing and likely changes to CPU architectures (Brodtkorb
et al. 2010).
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