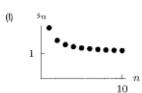
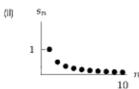
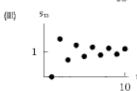
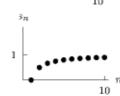
Problems


17. Match formulas (a)-(d) with graphs (I)-(IV)


(a)
$$s_n = 1 - 1/n$$

(b)
$$s_n = 1 + (-1)^n/n$$


(c)
$$s_n = 1/n$$


(d)
$$s_n = 1 + 1/n$$

(IV)

Do the sequences in Problems 20-31 converge or diverge? If a sequence converges, find its limit

20.
$$(0.2)^n$$

22.
$$(-0.3)^n$$

23.
$$3 + e^{-2n}$$

24.
$$\frac{2^n}{3^n}$$

25.
$$\frac{n}{10} + \frac{10}{n}$$

26.
$$\frac{(-1)^n}{n}$$

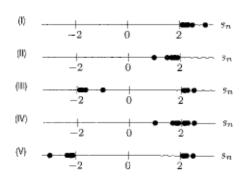
27.
$$\frac{2n+1}{n}$$

29.
$$\frac{\sin n}{n}$$

30.
$$\frac{2n+(-1)^n 5}{4n-(-1)^n 3}$$

31.
$$\frac{2^n}{n^3}$$

Match formulas (a)–(e) with graphs (I)–(V)


(a)
$$s_n = 2 - 1/n$$

(b)
$$s_n = (-1)^n 2 + 1/n$$

(c)
$$s_n = 2 + (-1)^n/n$$

(d)
$$s_n = 2 + 1/n$$

(e)
$$s_n = (-1)^n 2 + (-1)^n / n$$

In electrical engineering, a continuous function like f(t) =sin t, where t is time in seconds, is referred to as an analog signal. To digitize the signal, we sample f(t) every Δt seconds to form the sequence $s_n = f(n\Delta t)$ For example, sampling f every 1/10 second produces the sequence $\sin(1/10)$, $\sin(2/10)$, $\sin(3/10)$. In Problems 32–34, give the first 6 terms of a sampling of the signal every Δt seconds

32.
$$f(t) = \cos 5t, \Delta t = 0.1$$

33.
$$f(t) = (x-1)^2, \Delta t = 0.5$$

34.
$$f(t) = \frac{\sin t}{t}, \Delta t = 1$$

To smooth a sequence, s_1 , s_2 , s_3 , , we replace each term s_n by t_n , the average of s_n with its neighboring terms

$$t_n = \frac{(s_{n-1} + s_n + s_{n+1})}{3}$$
 for $n > 1$

We start with $t_1 = (s_1 + s_2)/2$, since s_1 has only one neighbor. For Problems 35-37, smooth the sequence once and then smooth the resulting sequence What do you notice?

38. Let V_n be the number of new SUVs sold in the US in month n, where n = 1 is January 2004. In terms of SUVs, what do the following represent?

(a)
$$V_{10}$$

(b)
$$V_n = V_{n-1}$$

(b)
$$V_n - V_{n-1}$$

(c) $\sum_{i=1}^{12} V_i$ and $\sum_{i=1}^{n} V_i$

19. Match formulas (a)-(e) with descriptions (I)-(V) of the behavior of the sequence as $n \to \infty$

(a)
$$s_n = n(n+1) - 1$$

(b)
$$s_n = 1/(n+1)$$

(c)
$$s_n = 1 - n^2$$

(d)
$$s_n = \cos(1/n)$$

(e)
$$s_n = (\sin n)/n$$

(I) Diverges to
$$-\infty$$

- (II) Diverges to +∞
- (III) Converges to 0 through positive numbers
- (IV) Converges to 1
- (V) Converges to 0 through positive and negative num-

³ www.bp.com accessed May 28 2004