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Motivating Example

Blood Glucose Experiment

design mean
A G B C D E F H reading

1 1 1 1 1 1 1 1 97.94
1 1 2 2 2 2 2 2 83.40
1 1 3 3 3 3 3 3 95.88
1 2 1 1 2 2 3 3 88.86
1 2 2 2 3 3 1 1 106.58
1 2 3 3 1 1 2 2 89.57
1 3 1 2 1 3 2 3 91.98
1 3 2 3 2 1 3 1 98.41
1 3 3 1 3 2 1 2 87.56
2 1 1 3 3 2 2 1 88.11
2 1 2 1 1 3 3 2 83.81
2 1 3 2 2 1 1 3 98.27
2 2 1 2 3 1 3 2 115.52
2 2 2 3 1 2 1 3 94.89
2 2 3 1 2 3 2 1 94.70
2 3 1 3 2 3 1 2 121.62
2 3 2 1 3 1 2 3 93.86
2 3 3 2 1 2 3 1 96.10

Analysis based on linear model.

Design features:

I 18 runs

I A discrete, B - H continuous

I Some continuous settings
unevenly spaced.

I Complex aliasing ⇒
interactions and polynomial
terms can be considered.



Blood Glucose Example

What model terms?

I Standard: A,B,B2, . . .H,H2 (15 terms)

I Interactions: AB,AB2, . . .G 2H2 (98 terms)

I Total: 113 terms

I There are
17∑
i=0

(
113

i

)
= 7.65× 1019 possible models.

With so many possible terms and only 18 runs, assumptions will
need to be made.
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What are reasonable assumptions about the space of
models?

Hamada & Wu (1992), Wu and Hamada book (2000):

I Effect hierarchy: main effects more likely than interactions.

I Effect sparsity: only a few effects are important.

I Effect heredity*: when a two-factor interaction is active, at
least one corresponding main effect should be active.

(with extensions to polynomials and polynomial interactions)

Hamada and Wu (1992) used these principles to motivate a
stepwise model search algorithm.

* name suggested by Randy Sitter



Hamada-Wu (1992) search
Stepwise search algorithm, described with main effects and 2fi’s:

1. Select significant effects from main effects and 2fi’s
orthogonal to main effects.

2. Search over effects from step 1 and 2fi’s with at least one
active main effect in 1.

3. Search with forward stepwise over main effects and
interactions related to those identified in 2.

4. Steps 2 & 3 repeated to convergence.

I Search employs “weak heredity”: an interaction can enter
with one corresponding main effect, e.g. A,AB active, but B
inactive.

I More thorough search is also proposed as an alternative.



Is the search good enough?

I Hamada-Wu stepwise search explores only a small subset of
models permitted under heredity.

I H-W can miss important terms in some circumstances (e.g.
Y = A + 2AB + 2AC + ε, larger interactions than main
effects).

I But conventional all-subsets searches do not respect the three
principles.

I What we really want is a thorough search.
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Bayesian Model Search

Chipman (1996) and Chipman Hamada and Wu (1997) develop a
Bayesian formulation that:

I Incorporates hierarchy, sparsity, and heredity in the prior
distributions

I Uses MCMC for stochastic search (“SSVS”, George and
McCulloch 1993)

I Quantifies model uncertainty via posterior distribution on
models.



Model Specification:

Y = Xβ + ε, ε ∼ N(0, σ2I )

Additional parameter vector δ specifies which terms are included in
the model.
Example: A B C AB AC BC

↓ ↓ ↓ ↓ ↓ ↓
δA δB δC δAB δAC δBC

Each δ element is 0 or 1

I {δA = 0} ⇒ A not in model
I {δA = 1} ⇒ A in model

δ = (1 0 0 1 0 0)⇔ model has terms A and AB only.



What prior for the model (i.e. δ)?

Independent Bernoullis: π(δ) =

p∏
i=1

pδii (1− pi )
1−δi

This violates heredity; instead use conditional structure:

P(δAB = 1|δA, δB) =


p00 if (δA, δB) = (0, 0)
p01 if (δA, δB) = (0, 1)
p10 if (δA, δB) = (1, 0)
p11 if (δA, δB) = (1, 1)

I Weak heredity: (p00, p01, p10, p11) = (0, 0.10, 0.10, 0.25)
I Strong heredity: (p00, p01, p10, p11) = (0, 0, 0, 0.25)
I Relaxed (weak/strong) heredity: change 0’s to 0.01’s.
I Ideas generalize to higher order terms and extend to

categorical predictors with ≥ 3 levels (“effect grouping”).



Example prior calculation

Consider a simple example with 5 main effects (A...E ),
5 quadratics (A2...E 2), 10 2fi’s (AB, ...,DE ):

Prior probability of inclusion:

I 0.25 for main effects

I (0.01, 0.25) for quadratics

I (0.01, 0.10, 0.10, 0.25) for interactions

Pr(A,B,C ,D,E ) =
= (.255) ×(.755) ×(.7510)

(A...E active ) (A2...E 2 inactive ) (AB...DE inactive )
= .000013



Prior on β, σ:
Prior factored as π(β, σ, δ) = π(β, σ|δ)π(δ).

Various priors possible, here we use George & McCulloch, 93/97

νλ/σ2 ∼ χ2
ν

βi |δi ∼
{

N(0, τ2i ) if δi = 0
N(0, (ciτi )

2) if δi = 1

where ci > 1 −3 −2 −1 0 1 2 3

0
1

2
3

4

β

de
ns

ity

I Posteriors obtained by the Gibbs sampler (stochastic search)
I Important variant: conjugate priors, enabling β, σ to be

analytically integrated out of the posterior.
I Enables evaluation of Pr(δ|Y ) up to a normalizing constant.



MCMC model search
Example assuming strong heredity:

δ values

A B C AB AC BC
↓ ↓ ↓ ↓ ↓ ↓
δA δB δC δAB δAC δBC
1 1 0 1 0 0

I Gibbs sampler updates δ
vector one element at a
time, Bernoulli draws.

I Update for δA will depend
on value of δAB .

I Similarly δAB depends on
δA, δB .

I Gibbs is a stochastic
stepwise search algorithm.
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MCMC model search
Example assuming strong heredity:

δ values

A B C AB AC BC
↓ ↓ ↓ ↓ ↓ ↓
δA δB δC δAB δAC δBC
1 1 0 1 0 0
1 1 1 0

I Gibbs sampler updates δ
vector one element at a
time, Bernoulli draws.

I Update for δA will depend
on value of δAB .

I Similarly δAB depends on
δA, δB .

I Gibbs is a stochastic
stepwise search algorithm.
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Priors for glucose example:
π(δ): (relaxed weak heredity)
2 parents:

(p00, p01, p10, p11) = (0.01, 0.10, 0.10, 0.25)
1 parent:

(p0, p1) = (0.01, 0.25)
0 parents:
p = 0.25

π(σ):
use Sy/5 as guess for E(σ)
put 99th quantile near Sy .
Sy = 10.06 gives (ν, λ) = (2, 1.29).



Glucose example - posterior
Results: Most probable models

model prob R2

BH2,B2H2 0.183 0.7696
B,BH2,B2H2 0.080 0.8548
B,BH,BH2,B2H2 0.015 0.8601
F ,BH2,B2H2 0.014 0.7943
GE ,BH2,B2H2 0.013 0.8771
AH2,BH2,B2H2 0.009 0.8528
G 2D,BH2,B2H2 0.009 0.8517
A,BH2,B2H2 0.008 0.7938

I Marginal probabilities also available:
Pr(B) = .33,Pr(BH2) = .927,Pr(B2H2) = .907

I Changing prior 0.01’s to 0.0’s (relaxed weak heredity → weak
heredity) makes the model B,BH,BH2B2H2 most probable.

I With independence priors, most probable model has mass
≈ 0.0003



Parametrization and variable selection
Comment:

I In this case, products and powers of B (volume), H (dilution)
seem most important.

I Suggests that in fact “amount of material” may really be the
important factor.

I Be careful to ensure the right parametrization.
I (related to sliding factors - Hamada and Wu 1995, Cheng, Wu

and Huwang (2006))
I Variable selection priors concentrate prior mass on β values

near the axes (i.e., some elements 0).



Parametrization and variable selection, continued
Related issue: Why strong heredity may be desirable:

I Peixoto (1990): strong heredity guarantees selection of same
terms under linear transformations of predictors
(e.g., A→ (A− 1.2) and A2 → (A− 1.2)2).
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Value of a Posterior Distribution on Models
What can you do with a posterior on models?

I Pick most probable model, knowing how much (or little)
support it has.

I Incorporate model uncertainty in “downstream” decisions.



Value of a Posterior Distribution on Models

“Downstream” decision example: robust parameter design
optimization (Shoemaker, Tsui, Wu 1991; Tan and Wu 2013):

I Model response as a function of control and noise factors
(“Response model approach”)

I Assume distribution for noise factors, giving response mean
and variance functions as “performance measures”.

I Posterior on parameters (β, σ) and models leads to
uncertainty of performance measures (Chipman 1997).

I Accounting for uncertainty can change effectiveness of
different adjustment variables.



Priors as penalty functions

Posterior ∝ Likelihood× Prior

log(Posterior) ∝ log(Likelihood) + log(Prior)

Posterior is like a penalized likelihood, with prior = penalty.

Example: 5 variables (A, B, C, D, E)
Full second order model (20 terms):

A,B,C ,D,E ,A2,B2,C 2,D2,E 2

AB,AC ,AD,AE ,BC ,BD,BE ,CD,CE ,DE
Probability of inclusion:

0.25 for main effects
(0.01, 0.25) for quadratics
(0.01, 0.10, 0.10, 0.25) for interactions



Priors as penalty functions
Probability of inclusion:

0.25 for main effects
(0.01, 0.25) for quadratics
(0.01, 0.10, 0.10, 0.25) for interactions

Pr(A,B,C ,D,E ) =
= (.255) (.755) (.7510)

(A...E ) (A2...E 2) (AB...DE )
= .000013

Pr(A,B,A2,B2,AB)
= (.252)(.753) (.252)(.993) (.25)(.96)(.993)

(A...E ) (A2...E 2) (AB...DE )
= .000206

Pr(A,B,A2,B2,AB)

Pr(A,B,C ,D,E )
=
.000206

.000013
= 15.79

The main-effect-only model is less probable than a polynomial
model in 2 factors!



Other uses of heredity principles & Bayes:
Three principles and/or Bayes formulation can be used in a variety
of “regression” contexts:

I Other designs: screening designs, hard-to-control factors,
supersaturated designs

I Other responses: binary, ordinal, censored, Poisson, circular, ...

I Part of overall framework (Wu and Hamada book).
I Tan and Wu (2013) and Goh and Bingham (2014) extended

the SSVS idea with heredity to split plot experiments and
robust design experiments.

I Different approaches to search - G&B utilize MCMC, T&W
develop a stochastic search that exploits ability to evaluate
marginal posterior Pr(δ|Y ).



Other uses of heredity principles & Bayes:
Model Selection in Design

I Construction and analysis of 3-level designs incorporating the
3 principles:

I Cheng & Wu 2001 strategy of selection, projection, fitting
interactions.

I Xu, Cheng & Wu 2004 for optimal design.
I Design for model discrimination: Meyer, Steinberg and Box

(1996), Bingham and Chipman (2007).
I Average of design criterion over a prior placed on models, or

over a posterior (for a followup design).



Isn’t variable selection old-fashioned?
What about the Lasso? Or many other “modern” sparse regression
methods? Isn’t model selection old-fashioned these days?

I Principles have been incorporated into Lasso (Yuan, Joseph &
Lin 2007), Garrotte (Yuan, Joseph & Zou 2009).

I L1 and other penalized regression methods are solving a
somewhat different problem: Selection of one model, without
quantification of uncertainty.



Closing remarks
I Uncertainty quantification is central to statistics.
I In industrial settings, scarce data and/or complex models

often lead to statistical uncertainty.
I Model uncertainty can be easily overlooked.
I “UQ” is central to computer experiments.
I Hallmark of Jeff’s research is the appropriate quantification of

uncertainty, combined with efficient and imaginative
algorithms to design and analyze statistical studies.



Thank you



Beyond Regression
Model search and uncertainty in other models:

I Ensemble models

y = f1(x) + f2(x) + ...+ fm(x) + ε

Where each fj is a decision tree model, with its own set of
parameters.

I Similar tools for quantifying uncertainty as in regression:
I regression coefficient ⇔ terminal node output
I model uncertainty ⇔ uncertainty in tree structure.
I MCMC used to compute the posterior.

I Uncertainty in f ’s translates to uncertainty in the functional
form of response.

I Sequential design or simply uncertainty quantification.
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