Bayes for model search and representing uncertainty
 presented at

"Building Statistical Methodology and Theory 2014" In honor of Jeff Wu's 65th birthday

Hugh Chipman
Acadia University

July 8, 2014

Outline

Motivating example: Glucose data

Principles to guide model search

Bayesian subset selection

Illustration with glucose example

Comments

Closing remarks

Outline

Motivating example: Glucose data

Principles to guide model search

Bayesian subset selection

Illustration with glucose example

Comments

Closing remarks

Motivating Example

Blood Glucose Experiment
Analysis based on linear model.

| design | | | | | | mean | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | ---: |
| A | G | B | C | D | E | F | H | reading |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 97.94 |
| 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 83.40 |
| 1 | 1 | 3 | 3 | 3 | 3 | 3 | 3 | 95.88 |
| 1 | 2 | 1 | 1 | 2 | 2 | 3 | 3 | 88.86 |
| 1 | 2 | 2 | 2 | 3 | 3 | 1 | 1 | 106.58 |
| 1 | 2 | 3 | 3 | 1 | 1 | 2 | 2 | 89.57 |
| 1 | 3 | 1 | 2 | 1 | 3 | 2 | 3 | 91.98 |
| 1 | 3 | 2 | 3 | 2 | 1 | 3 | 1 | 98.41 |
| 1 | 3 | 3 | 1 | 3 | 2 | 1 | 2 | 87.56 |
| 2 | 1 | 1 | 3 | 3 | 2 | 2 | 1 | 88.11 |
| 2 | 1 | 2 | 1 | 1 | 3 | 3 | 2 | 83.81 |
| 2 | 1 | 3 | 2 | 2 | 1 | 1 | 3 | 98.27 |
| 2 | 2 | 1 | 2 | 3 | 1 | 3 | 2 | 115.52 |
| 2 | 2 | 2 | 3 | 1 | 2 | 1 | 3 | 94.89 |
| 2 | 2 | 3 | 1 | 2 | 3 | 2 | 1 | 94.70 |
| 2 | 3 | 1 | 3 | 2 | 3 | 1 | 2 | 121.62 |
| 2 | 3 | 2 | 1 | 3 | 1 | 2 | 3 | 93.86 |
| 2 | 3 | 3 | 2 | 1 | 2 | 3 | 1 | 96.10 |

Design features:

- 18 runs
- A discrete, B - H continuous
- Some continuous settings unevenly spaced.
- Complex aliasing \Rightarrow interactions and polynomial terms can be considered.

Blood Glucose Example

What model terms?

- Standard: $A, B, B^{2}, \ldots H, H^{2}$ (15 terms)
- Interactions: $A B, A B^{2}, \ldots G^{2} H^{2}$ (98 terms)
- Total: 113 terms
- There are $\sum_{i=0}^{17}\binom{113}{i}=7.65 \times 10^{19}$ possible models.

With so many possible terms and only 18 runs, assumptions will need to be made.

Outline

Motivating example: Glucose data

Principles to guide model search

Bayesian subset selection

Illustration with glucose example

Comments

Closing remarks

What are reasonable assumptions about the space of

 models?Hamada \& Wu (1992), Wu and Hamada book (2000):

- Effect hierarchy: main effects more likely than interactions.
- Effect sparsity: only a few effects are important.
- Effect heredity*: when a two-factor interaction is active, at least one corresponding main effect should be active. (with extensions to polynomials and polynomial interactions)

Hamada and Wu (1992) used these principles to motivate a stepwise model search algorithm.

* name suggested by Randy Sitter

Hamada-Wu (1992) search

Stepwise search algorithm, described with main effects and 2fi's:

1. Select significant effects from main effects and 2 fi 's orthogonal to main effects.
2. Search over effects from step 1 and 2 fi's with at least one active main effect in 1.
3. Search with forward stepwise over main effects and interactions related to those identified in 2.
4. Steps 2 \& 3 repeated to convergence.

- Search employs "weak heredity": an interaction can enter with one corresponding main effect, e.g. $A, A B$ active, but B inactive.
- More thorough search is also proposed as an alternative.

Is the search good enough?

- Hamada-Wu stepwise search explores only a small subset of models permitted under heredity.
- H-W can miss important terms in some circumstances (e.g. $Y=A+2 A B+2 A C+\varepsilon$, larger interactions than main effects).
- But conventional all-subsets searches do not respect the three principles.
- What we really want is a thorough search.

Outline

Motivating example: Glucose data

Principles to guide model search

Bayesian subset selection

Illustration with glucose example

Comments

Closing remarks

Bayesian Model Search

Chipman (1996) and Chipman Hamada and Wu (1997) develop a Bayesian formulation that:

- Incorporates hierarchy, sparsity, and heredity in the prior distributions
- Uses MCMC for stochastic search ("SSVS", George and McCulloch 1993)
- Quantifies model uncertainty via posterior distribution on models.

Model Specification:

$$
Y=X \beta+\varepsilon, \quad \varepsilon \sim N\left(0, \sigma^{2} I\right)
$$

Additional parameter vector δ specifies which terms are included in the model.
$\begin{array}{ccccccc}\text { Example: } & A & B & C & A B & A C & B C \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \delta_{A} & \delta_{B} & \delta_{C} & \delta_{A B} & \delta_{A C} & \delta_{B C}\end{array}$
Each δ element is 0 or 1

- $\left\{\delta_{A}=0\right\} \Rightarrow A$ not in model
- $\left\{\delta_{A}=1\right\} \Rightarrow \mathrm{A}$ in model
$\delta=\left(\begin{array}{lllll}1 & 0 & 0 & 1 & 0\end{array}\right) \Leftrightarrow$ model has terms A and $A B$ only.

What prior for the model (i.e. $\delta) ?$

Independent Bernoullis: $\pi(\delta)=\prod_{i=1}^{p} p_{i}^{\delta_{i}}\left(1-p_{i}\right)^{1-\delta_{i}}$
This violates heredity; instead use conditional structure:

$$
P\left(\delta_{A B}=1 \mid \delta_{A}, \delta_{B}\right)= \begin{cases}p_{00} & \text { if }\left(\delta_{A}, \delta_{B}\right)=(0,0) \\ p_{01} & \text { if }\left(\delta_{A}, \delta_{B}\right)=(0,1) \\ p_{10} & \text { if }\left(\delta_{A}, \delta_{B}\right)=(1,0) \\ p_{11} & \text { if }\left(\delta_{A}, \delta_{B}\right)=(1,1)\end{cases}
$$

- Weak heredity: $\quad\left(p_{00}, p_{01}, p_{10}, p_{11}\right)=(0,0.10,0.10,0.25)$
- Strong heredity: $\quad\left(p_{00}, p_{01}, p_{10}, p_{11}\right)=(0,0,0,0.25)$
- Relaxed (weak/strong) heredity: change 0's to 0.01 's.
- Ideas generalize to higher order terms and extend to categorical predictors with ≥ 3 levels ("effect grouping").

Example prior calculation

Consider a simple example with 5 main effects ($A \ldots E$), 5 quadratics $\left(A^{2} \ldots E^{2}\right), 102$ fi's $(A B, \ldots, D E)$:

Prior probability of inclusion:

- 0.25 for main effects
- $(0.01,0.25)$ for quadratics
- $(0.01,0.10,0.10,0.25)$ for interactions
$\operatorname{Pr}(A, B, C, D, E)=$
$=\left(.25^{5}\right) \quad \times\left(.75^{5}\right) \quad \times\left(.75^{10}\right)$
($A \ldots E$ active) ($A^{2} \ldots E^{2}$ inactive) ($A B \ldots D E$ inactive)
$=.000013$

Prior on β, σ :

Prior factored as $\pi(\beta, \sigma, \delta)=\pi(\beta, \sigma \mid \delta) \pi(\delta)$.
Various priors possible, here we use George \& McCulloch, 93/97

$$
\begin{aligned}
& \nu \lambda / \sigma^{2} \sim \chi_{\nu}^{2} \\
& \beta_{i} \left\lvert\, \delta_{i} \sim \begin{cases}N\left(0, \tau_{i}^{2}\right) & \text { if } \delta_{i}=0 \\
N\left(0,\left(c_{i} \tau_{i}\right)^{2}\right) & \text { if } \delta_{i}=1\end{cases} \right. \\
& \text { where } c_{i}>1
\end{aligned}
$$

- Posteriors obtained by the Gibbs sampler (stochastic search)
- Important variant: conjugate priors, enabling β, σ to be analytically integrated out of the posterior.
- Enables evaluation of $\operatorname{Pr}(\delta \mid Y)$ up to a normalizing constant.

MCMC model search

Example assuming strong heredity:

δ values					
A	B	C	$A B$	$A C$	$B C$
\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
δ_{A}	δ_{B}	δ_{C}	$\delta_{A B}$	$\delta_{A C}$	$\delta_{B C}$
1	1	0	1	0	0

- Gibbs sampler updates δ vector one element at a time, Bernoulli draws.
- Update for δ_{A} will depend on value of $\delta_{A B}$.
- Similarly $\delta_{A B}$ depends on δ_{A}, δ_{B}.
- Gibbs is a stochastic stepwise search algorithm.

MCMC model search

Example assuming strong heredity:

δ values					
A	B	C	$A B$	$A C$	$B C$
\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
δ_{A}	δ_{B}	δ_{C}	$\delta_{A B}$	$\delta_{A C}$	$\delta_{B C}$
1	1	0	1	0	0
$\underline{1}$	-	-	-	-	-

- Gibbs sampler updates δ vector one element at a time, Bernoulli draws.
- Update for δ_{A} will depend on value of $\delta_{A B}$.
- Similarly $\delta_{A B}$ depends on δ_{A}, δ_{B}.
- Gibbs is a stochastic stepwise search algorithm.

MCMC model search

Example assuming strong heredity:

δ values					
A	B	C	$A B$	$A C$	$B C$
\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
δ_{A}	δ_{B}	δ_{C}	$\delta_{A B}$	$\delta_{A C}$	$\delta_{B C}$
1	1	0	1	0	0
$\underline{1}$	$\underline{1}$	-	-	-	-

- Gibbs sampler updates δ vector one element at a time, Bernoulli draws.
- Update for δ_{A} will depend on value of $\delta_{A B}$.
- Similarly $\delta_{A B}$ depends on δ_{A}, δ_{B}.
- Gibbs is a stochastic stepwise search algorithm.

MCMC model search

Example assuming strong heredity:

δ values					
A	B	C	$A B$	$A C$	$B C$
\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
δ_{A}	δ_{B}	δ_{C}	$\delta_{A B}$	$\delta_{A C}$	$\delta_{B C}$
1	1	0	1	0	0
$\underline{1}$	$\underline{1}$	$\underline{1}$	-	-	-

- Gibbs sampler updates δ vector one element at a time, Bernoulli draws.
- Update for δ_{A} will depend on value of $\delta_{A B}$.
- Similarly $\delta_{A B}$ depends on δ_{A}, δ_{B}.
- Gibbs is a stochastic stepwise search algorithm.

MCMC model search

Example assuming strong heredity:

δ values					
A	B	C	$A B$	$A C$	$B C$
\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
δ_{A}	δ_{B}	δ_{C}	$\delta_{A B}$	$\delta_{A C}$	$\delta_{B C}$
1	1	0	1	0	0
$\underline{1}$	$\underline{1}$	$\underline{1}$	$\underline{0}$	-	-

- Gibbs sampler updates δ vector one element at a time, Bernoulli draws.
- Update for δ_{A} will depend on value of $\delta_{A B}$.
- Similarly $\delta_{A B}$ depends on δ_{A}, δ_{B}.
- Gibbs is a stochastic stepwise search algorithm.

Outline

> Motivating example: Glucose data

> Principles to guide model search

> Bayesian subset selection

Illustration with glucose example

Comments

Closing remarks

Priors for glucose example:

$\pi(\delta)$: (relaxed weak heredity)
2 parents:

$$
\left(p_{00}, p_{01}, p_{10}, p_{11}\right)=(0.01,0.10,0.10,0.25)
$$

1 parent:

$$
\left(p_{0}, p_{1}\right)=(0.01,0.25)
$$

0 parents:

$$
p=0.25
$$

$\pi(\sigma)$:
use $S_{y} / 5$ as guess for $\mathrm{E}(\sigma)$
put $99^{\text {th }}$ quantile near S_{y}.
$S_{y}=10.06$ gives $(\nu, \lambda)=(2,1.29)$.

Glucose example - posterior

Results: Most probable models

model	prob	R^{2}
$B H^{2}, B^{2} H^{2}$	0.183	0.7696
$B, B H^{2}, B^{2} H^{2}$	0.080	0.8548
$B, B H, B H^{2}, B^{2} H^{2}$	0.015	0.8601
$F, B H^{2}, B^{2} H^{2}$	0.014	0.7943
$G E, B H^{2}, B^{2} H^{2}$	0.013	0.8771
$A H^{2}, B H^{2}, B^{2} H^{2}$	0.009	0.8528
$G^{2} D, B H^{2}, B^{2} H^{2}$	0.009	0.8517
$A, B H^{2}, B^{2} H^{2}$	0.008	0.7938

- Marginal probabilities also available:

$$
\operatorname{Pr}(B)=.33, \operatorname{Pr}\left(B H^{2}\right)=.927, \operatorname{Pr}\left(B^{2} H^{2}\right)=.907
$$

- Changing prior 0.01's to 0.0's (relaxed weak heredity \rightarrow weak heredity) makes the model $B, B H, B H^{2} B^{2} H^{2}$ most probable.
- With independence priors, most probable model has mass ≈ 0.0003

Parametrization and variable selection

Comment:

- In this case, products and powers of B (volume), H (dilution) seem most important.
- Suggests that in fact "amount of material" may really be the important factor.
- Be careful to ensure the right parametrization.
- (related to sliding factors - Hamada and Wu 1995, Cheng, Wu and Huwang (2006))
- Variable selection priors concentrate prior mass on β values near the axes (i.e., some elements 0).

Parametrization and variable selection, continued

Related issue: Why strong heredity may be desirable:

- Peixoto (1990): strong heredity guarantees selection of same terms under linear transformations of predictors

$$
\text { (e.g., } \left.A \rightarrow(A-1.2) \text { and } A^{2} \rightarrow(A-1.2)^{2}\right) \text {. }
$$

Outline

Motivating example: Glucose data

Principles to guide model search

Bayesian subset selection

Illustration with glucose example

Comments

Closing remarks

Value of a Posterior Distribution on Models

What can you do with a posterior on models?

- Pick most probable model, knowing how much (or little) support it has.
- Incorporate model uncertainty in "downstream" decisions.

Value of a Posterior Distribution on Models

"Downstream" decision example: robust parameter design optimization (Shoemaker, Tsui, Wu 1991; Tan and Wu 2013):

- Model response as a function of control and noise factors ("Response model approach")
- Assume distribution for noise factors, giving response mean and variance functions as "performance measures".
- Posterior on parameters (β, σ) and models leads to uncertainty of performance measures (Chipman 1997).
- Accounting for uncertainty can change effectiveness of different adjustment variables.

Priors as penalty functions

> Posterior \propto Likelihood \times Prior $\log ($ Posterior $) \propto \log ($ Likelihood $)+\log ($ Prior $)$

Posterior is like a penalized likelihood, with prior $=$ penalty.
Example: 5 variables (A, B, C, D, E)
Full second order model (20 terms):
$A, B, C, D, E, A^{2}, B^{2}, C^{2}, D^{2}, E^{2}$
$A B, A C, A D, A E, B C, B D, B E, C D, C E, D E$
Probability of inclusion:
0.25 for main effects
($0.01,0.25$) for quadratics
($0.01,0.10,0.10,0.25$) for interactions

Priors as penalty functions

Probability of inclusion:
0.25 for main effects
($0.01,0.25$) for quadratics
($0.01,0.10,0.10,0.25$) for interactions
$\operatorname{Pr}(A, B, C, D, E)=$
$=\left(.25^{5}\right) \quad\left(.75^{5}\right)$
(.75 ${ }^{10}$)
(A...E) $\quad\left(A^{2} \ldots E^{2}\right) \quad(A B \ldots D E)$
$=.000013$

$$
\begin{aligned}
& \operatorname{Pr}\left(A, B, A^{2}, B^{2}, A B\right) \\
& =\left(.25^{2}\right)\left(.75^{3}\right) \\
& \quad\left(.25^{2}\right)\left(.99^{3}\right) \\
& =(A \ldots E) \\
& =.000206 \\
& \frac{\operatorname{Pr}\left(A, B, A^{2}, B^{2}, A B\right)}{\operatorname{Pr}(A, B, C, D, E)}=\frac{.000206}{.000013}=15.79
\end{aligned}
$$

The main-effect-only model is less probable than a polynomial model in 2 factors!

Other uses of heredity principles \& Bayes:

Three principles and/or Bayes formulation can be used in a variety of "regression" contexts:

- Other designs: screening designs, hard-to-control factors, supersaturated designs
- Other responses: binary, ordinal, censored, Poisson, circular, ...
- Part of overall framework (Wu and Hamada book).
- Tan and Wu (2013) and Goh and Bingham (2014) extended the SSVS idea with heredity to split plot experiments and robust design experiments.
- Different approaches to search - G\&B utilize MCMC, T\&W develop a stochastic search that exploits ability to evaluate marginal posterior $\operatorname{Pr}(\delta \mid Y)$.

Other uses of heredity principles \& Bayes:

Model Selection in Design

- Construction and analysis of 3-level designs incorporating the 3 principles:
- Cheng \& Wu 2001 strategy of selection, projection, fitting interactions.
- Xu, Cheng \& Wu 2004 for optimal design.
- Design for model discrimination: Meyer, Steinberg and Box (1996), Bingham and Chipman (2007).
- Average of design criterion over a prior placed on models, or over a posterior (for a followup design).

Isn't variable selection old-fashioned?

What about the Lasso? Or many other "modern" sparse regression methods? Isn't model selection old-fashioned these days?

- Principles have been incorporated into Lasso (Yuan, Joseph \& Lin 2007), Garrotte (Yuan, Joseph \& Zou 2009).
- L1 and other penalized regression methods are solving a somewhat different problem: Selection of one model, without quantification of uncertainty.

Closing remarks

- Uncertainty quantification is central to statistics.
- In industrial settings, scarce data and/or complex models often lead to statistical uncertainty.
- Model uncertainty can be easily overlooked.
- "UQ" is central to computer experiments.
- Hallmark of Jeff's research is the appropriate quantification of uncertainty, combined with efficient and imaginative algorithms to design and analyze statistical studies.

Thank you

Beyond Regression

Model search and uncertainty in other models:

- Ensemble models

$$
y=f_{1}(x)+f_{2}(x)+\ldots+f_{m}(x)+\varepsilon
$$

Where each f_{j} is a decision tree model, with its own set of parameters.

- Similar tools for quantifying uncertainty as in regression:
- regression coefficient \Leftrightarrow terminal node output
- model uncertainty \Leftrightarrow uncertainty in tree structure.
- MCMC used to compute the posterior.
- Uncertainty in f 's translates to uncertainty in the functional form of response.
- Sequential design or simply uncertainty quantification.

