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Motivating example

Krishnamoorthy, Mallick and
Mathew (2011, Technometrics)
Inference for the Lognormal Mean and Quantiles Based

on Samples with Left and Right Type I Censoring

Simulation study: size of a
nominal α = 0.05 test for a
lognormal mean.

Table: Type I error, for 432
different combinations of 5
experimental factors.

Results summarized by text, e.g.
“The test based on the
asymptotic normality of the
MLE seems to be the worst
among all tests.”



Motivating example

Study looked at several
comparisons:

I Tail of test (L/R/two-sided)
3 levels

I Sample size
3 levels

I Population variance σ2

3 levels

I Censoring level (“p0”)
4 levels

I 4 different hypothesis tests
4 levels

Full factorial design with
3× 3× 3× 4× 4 = 432 runs



This simulation study is a designed experiment

Viewing the study as a designed experiment leads me to ask some
questions:

1. Design: Are so many runs necessary? Could we reduce the
number of runs and/or use a fractional factorial?

2. Analysis: Why not use a statistical analysis to report results
instead of presenting a massive table?

For this example, let’s try to answer these questions, with “design
of experiments 101” tools:

1. Analysis of full factorial experiment.

2. Design of smaller study.

3. Re-analysis of smaller study.

4. Repeat #2 and #3 with fractional factorial.



Analysis of full factorial experiment

Include:

I main effects (2 + 2 + 2 + 3 + 3 = 12 df)

I two-factor interactions (57 df)

I three-factor interactions (134 df)

... leaving 228 df for residuals

(main effects: R2 = 22.3%, 2fi: R2 = 82.5%, 3fi: R2 = 95.4%)

And we might as well remove insignificant terms from the model.



Analysis of full factorial experiment

ANOVA table, ordered by Mean SS terms:

summary(aov(y ~ (tail + sigma + method + p0 + n)^3,data=mydata))

Df Sum Sq Mean Sq F value Pr(>F)

tail:method 6 0.225805 0.037634 470.3605 < 2.2e-16 ***

method 3 0.055513 0.018504 231.2728 < 2.2e-16 ***

tail 2 0.033227 0.016613 207.6383 < 2.2e-16 ***

sigma 2 0.009920 0.004960 61.9892 < 2.2e-16 ***

tail:sigma:method 12 0.029806 0.002484 31.0431 < 2.2e-16 ***

sigma:method 6 0.013771 0.002295 28.6862 < 2.2e-16 ***

tail:sigma 4 0.009015 0.002254 28.1669 < 2.2e-16 ***

sigma:p0 6 0.008071 0.001345 16.8126 < 2.2e-16 ***

method:n 6 0.005038 0.000840 10.4933 1.619e-10 ***

sigma:method:p0 18 0.010329 0.000574 7.1721 4.240e-15 ***

n 2 0.001137 0.000569 7.1077 0.0009726 ***

...

Residuals 284 0.022723 0.000080



Analysis of full factorial experiment

Plot of main effects:
Large effects: tail, sigma, method

Small effects: censoring (p0) and n.
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Analysis of full factorial experiment

Interaction plot for tail:method
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Analysis of full factorial experiment

Interaction plot for tail:method:sigma

Asymptotic Normal (“AN”) test has higly variable α-level.
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Design of smaller study

Full factorial with fewer levels?

We had (and can reduce to):

I Tail of test (L/R/two-sided): 3 levels

I 4 different hypothesis tests: 4 levels

I Sample size: 3 levels reduce to 2 levels

I Population variance σ2: 3 levels reduce to 2 levels

I Censoring level (“p0”): 4 levels reduce to 2 levels

So we go from 3× 3× 3× 4× 4 = 432 runs to
3× 2× 2× 2× 4 = 96 runs.

Note that because we have results for the full factorial, we can
“run” the simplified design.



Analysis of small full factorial experiment
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Analysis of small full factorial experiment
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Analysis of small full factorial experiment
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Analysis of small full factorial experiment

Conclusions:

I Similar significant terms.

I Analysis has less power, but most terms still significant.

I tail, sigma, method and interactions still most important.

I Dropping levels of numeric factors (n, sigma, p0) didn’t
hurt.

Can we go further? Fractional factorials?

Using JMP, we get a balanced 48-run D-optimal design
(half-fraction of 96 runs).



Analysis of small half fraction experiment
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Analysis of small half fraction experiment
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Analysis of small half fraction experiment

Conclusions:

I Fewer terms are statistically significant (now using 32 df for
effects out of 48 runs)

I Similar conclusions on effect sizes

I 3fi’s no longer feasible.



General remarks, I

I Statistical analysis of results a clear win.

I Reduce experimental effort through fewer levels.

I Fractional factorials possible, but scope limited (this and other
studies limited to 5 or fewer experimental variables).

I Open source tools for mixed-level factorial designs aren’t
readily available.

I Even if we’re interested in exploring nonlinearities and
higher-order interactions, smaller designs are a good place to
start.

I Screen out irrelevant factors, then study important factors in
greater detail.



General remarks, II

I Isn’t this a computer experiment?
I Simulation of pseudo-random samples makes for a

non-deterministic process.
I Do we care about exploring numeric variables on a continuous

scale?

I More complex experimental designs...
I What if we apply each method (here, 4 hypothesis tests) to

the same simulated data?
⇒ Split-plot experiment.

I Sensible choice of factor levels is important.
I Is n = 50 sufficiently large for large sample asymptotics?
I More generally, a significant factor can seem insignificant if we

choose levels badly.

I Replications?

I Transformations?

I Model checking?


