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May 4-8, 2015, Centre de recherches mathmatiques, Montreal

I About 60 participants

I 2-day short course by Eric Kolaczyk (Boston University) on
“Statistical Analysis of Network Data”,

I followed by 2.5 days of research presentations



Short course: “Statistical Analysis of Network Data”

1-hour overview: watch Eric’s talk at the January Opening
Conference (Fields Online / Video Archive, or
http://goo.gl/XhXO9s)

Two companion books provide a very good introduction / overview
to the area, including R code using the igraph package.

http://goo.gl/XhXO9s


Background on Graphs

A graph G = (V ,E ) is a mathematical
structure with sets:

I V of vertices (also called nodes)

I E of edges (also called links)

where elements of E are unordered pairs
{u, v} of distinct vertices u, v ∈ V

Graphs can be directed or undirected.

Directed graph: A graph G with each
edge having an ordering, i.e.,
{u, v} 6= {v , u}.



Background on Graphs, continued

Graphs can be represented by several
data structures:

Adjacency matrix: Adjacency list:

1 2 3 4 5 6 7

1 . 1 1 . . . . 1: 2, 3

2 1 . 1 1 . . . 2: 1, 3, 4

3 1 1 . . 1 . . 3: 1, 2, 5

4 . 1 . . 1 1 1 4: 2, 5, 6, 7

5 . . 1 1 . 1 . 5: 3, 4, 6

6 . . . 1 1 . 1 6: 4, 5, 7

7 . . . . 1 1 . 7: 5, 6

Edge list:

1--2, 1--3, 2--3, 2--4, 3--5, 4--5, 4--6, 4--7, 5--6, 6--7



Background on Graphs, continued

I Weighted graph: G = (V ,E ), and for every edge in E , we
have a non-negative weight.

I Dynamic graph: G (t) = (V (t),E (t)), allowing the set of
vertices and edges to vary over time t.

I Decorated graphs: Covariates or “attributes” associated with
I Vertices (e.g. gender of actors in a social network)
I Edges (e.g. number of emails sent between two actors)



Data examples: Social Network

Paramjit Gill discussed a bullying network among 3rd and 4th
grade students (21 students).

I Vertices = students

I Edges = bullying relation

I A→ B means “A bullies B”

I ...actually more complicated, data involves assessment of who
bullies who by other students.

I Objective: Fit a model characterizing the tendency to have
more (less) ties than you’d expect in a random graph.



Data Examples: Technological network

Leman Akoglu described a network traffic flow dataset

I vertices = hosts (125 hosts)

I network flow measured along edges (352 edges)

I this is dynamic data: flow changes over time, giving us
“snapshots” of the network over time (1304 snapshots)

I Objective: identify anomalies



Data Examples: Biological Networks

John Conroy described a study involving mapping the
“connectome” of brains.

I Nodes = locations in brain

I An edge is present if there is a sufficiently high correlation of
activation.

I Many biological network examples involve data where the
edges are not directly observed.

I Objective: Cluster regions of the brain in terms of connectivity.



Data Examples: Online social network

Carey Priebe discussed the Friendster network.

I Online social network

I ∼ 65 million vertices

I ∼ 1.8 billion edges

I self-identified groups are “ground truth”

I Objective is to cluster vertices into groups



Challenges and General Observations

Challenges:

I relational aspect to the data;

I complex statistical dependencies;

I high-dimensional and often massive in quantity.

I “sample size of 1”

General observations:

I Many disciplines study graph data: CS, Mathematics,
Statistics, Physics, ...

I Statistically there have been success stories, but some basic
statistical questions remain unanswered.



Areas of graph analytics

In his short course, Eric Kolaczyk divided things up into 5 main
areas:

I Visualization (Mapping)

I Descriptive statistics (Characterization)

I Sampling

I Inference

I Modeling

I’ll organize my comments mostly under these headings, with
reference to research talks presented at the conference.



Visualization

Basic objective: draw the graph in a visually appealing way.

Layout matters! Below are three views of the same graph.

Many algorithms for layout exist, often by analogy to energy /
forces between vertices.



Visualization

Decoration of edges or vertices can help visualize.

Example below: Karate network with two “factions” and their
leaders, using different colors for between and within group edges.



Visualization

Large networks present a challenge. Tricks include shifting the
“focus” to a specific part of the network or (below for a French
political blog network) clustering the vertices and then drawing a
graph for the clusters.



Visualization

Dynamic networks are also a challenge for visualization.

I Steve Thompson demonstrated a dynamic visualization of the
spread of a disease over a network.

I Visualizing a simulation provoked many interesting questions
about the underlying model.



Characterization

(“descriptive statistics for graphs”)

A wide range of numeric summaries exist for graphs. For
simplicitly I’ll mention just a few.

They can be at the level of an individual element:

I e.g. “degree” of a vertex = number of edges.

I proportion of closed triangles (if A and B are friends, and B
and C are friends, then are A and C friends?)

I closeness centrality c(v) = 1∑
u 6=v dist(v ,u) , where dist(v , u) is

the shortest path distance between vertices u, v .

Or they can be at the level of a graph:

I average degree

I degree distribution



Characterization

Computation:
I Many summaries can be calculated from adjacency matrix A

I Degree = row sum

I Some computing (e.g., shortest path) can be time-consuming.



Sampling

Typical network analysis approach:

I Interested in a system of elements and their interactions

I Collect elements and relations among them

I Represent data as network

I Characterize properties of network

But, what are we interested in?

1. The properties of the actual network we collected, or

2. An underlying “true” network, which our collected data
represent

for #2, statistical sampling theory is relevant.



Sampling: Notation

Let

I G = (V ,E ) be a network graph

I G ∗ = (V ∗,E ∗) be a sampled subgraph of G

I η(G ) be a summary characteristic of graph G

Goal: accurate estimation of η = η(G ) by some η̂ = η̂(G ∗).

For example, we might be interested in average degree of the
graph.



Sampling example

Illustrative example from Eric’s presentation: real data from
biological network.

Goal to estimate average degree

Entire graph has average degree 12.115

Two sampling strategies:

1. Sample n vertices and all their edges.

2. Sample n vertices and only edge between them.

Note: #2 will omit some edges that are included in #1 (e.g.,
edges from a sampled vertex to an unsampled vertex).



Sampling example, continued

Estimate average degree using η̂(G ∗) = η(G ∗) = average degree of
sampled network. This is a “plug in estimator”.

1. (blue) Sample n vertices
and all their edges.

2. (red) Sample n vertices and
only edges between them.

True average degree = 12.115

Red plug-in estimator underestimates average degree, since the
number of sampled edges is biased downward for every sampled
vertex.



Sampling

The accuracy of the estimator depends on how the data were
collected.

How do you correct such problems?

General approach: adjust for the sampling design.

Horvitz-Thompson estimator utilizes the inclusion probabilities of
elements (vertices or edges)

I Design-based inference,

I General approach that can be used for many network
statistics.

I Inferential statements possible.

I Inclusion probabilities (including joint inclusion probabilities)
may be difficult to compute.



Sampling Methods

Commonly used methods to sample a network:

1. Sample vertices, then edges between sampled vertices.

2. Sample edges, and all vertices attached to them

3. Snowball sampling: sample vertices, then follow all their edges
out to vertices, and repeat these “waves”

4. Path sampling: sample a set of source vertices and target
vertices. For each source/target pair, sample a path between
them.

As you can imagine, the sampling method affects the form of the
estimator used.



Inference

In discussing Sampling, we’ve seen that inferential statements may
be possible based on samples.

Slava Lyubchich discussed a bootstrap-based method of inference
(e.g., for mean degree):

I Bootstrap developed that samples small “patches” of
subgraph via snowball sampling

I HT estimator used for inference.

I Two bootstrap parameters must be chosen.

I Seems to give good inference for a wide variety of networks.



Inference

Eric Kolaczyk defined network inference as follows:
Problem Statement: Given measurements xi of attributes at some
or all vertices i ∈ V , and/or observations yij of ‘edge status’ for
some vertex pairs {i , j} ∈ V (2), infer the topology of G = (V ,E ).



Modelling

Statisticians demand a great deal of their modeling:

1. theoretically plausible

2. estimable from data

3. computationally feasible estimation strategies

4. quantification of uncertainty in estimates (e.g., confidence
intervals)

5. assessment of goodness-of-fit

6. understanding of the statistical properties of the overall
procedure



Modelling

Eric Kolaczyk characterized two main areas of modelling:

1. we observe a network G (and possibly attributes X ) and we
wish to model G (and X )
⇒ describe the network with a model.

2. we observe the network G , but lack some or all of the
attributes X , and we wish to infer X
⇒ Use network to predict other variables.

Nearly all the talks focused on problem #1:

I Stochastic block models

I clustering

Steve Thompson’s talk about modelling the spread of a disease on
a network was closer to #2: A model for a process on a network.



Stochastic Blockmodel

Stochastic block models explicitly parameterize the notion of
groups/modules, labeled (say) 1, ...,Q, with different rates of
connections between/within.

More specifically, this is a generative model, where

I Each vertex independently belongs to a group q with
probability αq, where

∑Q
q=1 αq = 1.

I For vertices i , j ∈ V , with i in group q and j in group r , the
probability that we have an edge between i and j is πqr .

This is, effectively, a mixture of classical random graphs.



Stochastic Blockmodel

Perhaps easier to explain in terms of the process of generating a
graph.

1. For each vertex, pick a group label at random using
probabilities α1, ..., αQ .

2. For each potential edge between vertices i and j , belonging to
groups q and r , respectively, carry out a Bernoulli trial with
probability πqr . 0 = no edge, 1=edge.

It’s a probabilistic clustering model, with clusters defined by
differing rates of between- and within-group communication.

It can be modified to simply identify groups with high within-group
connections (make πqr = some small value ε for q 6= r).

Estimation via EM, MCMC, or Variational Bayes



Stochastic Blockmodel

Blei described an implementation of a Mixed Membership
Stochastic Blockmodel, in which each vertex can belong to
multiple groups.

I Novelty in his approach was the ability to scale to large
(1,000,000 vertex) networks.

I Another extension is to have Poisson counts on the edges ⇒
seems to do better with varying degree vertices.

Carey Priebe discussed a hierarchical blockmodel, in which the
same recurring graph structures (“motifs”) were re-used at
different levels.

Mu Zhu discussed a continuous-time stochastic blockmodel for a
transactional network: basketball games (union of continuous time
multistate models and stochastic blockmodels).



Algorithmic models

The stochastic blockmodel and its variants are built on a
probability model. Other approaches to clustering can be more
algorithmic.

I Spectral methods look at the eigenvectors of the adjacency
matrix or other matrices (e.g. “Graph Laplacian”, defined as
D − A, with A = adjacency matrix and D = diagonal matrix
of degrees.)

I Danny Dunlavy discussed extensions of spectral methods to
time varying networks, using tensors to “stack up” networks
observed over time.

I Geoffrey Sanders looked at numerical analysis in accurate
computation of spectral decompositions for clustering.

I Francois Theberge took a very fast and scalable hierarchical
clustering algorithm and generated an “ensemble” version.
(Find multiple clusterings, reweight original edges, then use
weighted graph to find a more stable clustering.)



Other models

George Michalidis and Leman Akoglu both considered sequences of
graphs measured over time

I Changepoint detection

I Akoglu: algorithmic approach using ensembles of models

I Michalidis: leverages existing work on changepoints, combined
with a statistical graph model.

David Banks considered enriching text data (wikipedia) with
network information on links, combining topic models with network
analysis

Erico de Souza had interesting time series geolocated data on cell
phone calls, it would be interesting to include social network
information.



Conclusions

I Network modelling has been around for several decades

I ... but some areas are still in their infancy (e.g.
goodness-of-fit diagnostics.)

I Diverse groups tackling research problems

I ... and perhaps breakthroughs will happen with
collaborations?

I Statistically, the most headway has been made in areas where
a connection can be made to existing statistical technology.


