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2014 AARMS summer school class (Sunny Wang, Statistical
Learning co-teacher 2nd from right, first row)



Primary source: Introduction to Statistical
Learning with Applications in R by James,
Witten, Hastie and Tibshirani

Some other resources:

I Statistical Learning and Data Mining,
Hastie, Tibshirani and Friedman

I Pattern Recognition and Machine
Learning, Bishop

I Bayesian Methods for Nonlinear
Classification and Regression, Denison,
Holmes, Mallick and Smith.



Some examples of statistical learning

Wage data : Predict salary using demographic variables
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Some examples of statistical learning

Drug discovery:

I Identify compounds with desirable effect on biological target

I Response variable: Activity (inactive/active)

I Explanatory variables: Molecular descriptors

I Use high throughput screening to test thousands of
compounds, then build a model to predict activity for other
compounds.



Some examples of statistical learning



Some examples of statistical learning: Supervised Learning

The wage and drug discovery problems are examples of Supervised
Learning.

I We seek to predict a response Y using predictors X .

I We have available a training sample of (X ,Y ) pairs.

I Continuous response (wage) ⇒ “regression”

I Categorical response (drug discovery) ⇒ “classification”

Although not the focus of this overview, there are also methods for
unsupervised learning

I Discover structure in X without an observed Y .

I Clustering, principal component analysis, graphical models, ...



An unsupervised learning example

I Engine assembly
process.

I Steel valve seats
force-fitted into
cylinder head.

I Data: force profile vs.
time for each
insertion

I Problem: some
insertions bad, but we
can’t tell which ones.



An unsupervised learning example
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I Each observation is a
curve

I We have thousands of
curves

I Try to group together
curves and identify
anomalous insertions

I “grouping” =
“clustering”
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Regression

y = f (x) + ε

I y = response variable

I x = predictor variable(s)

I f (x) is an unknown function we wish to estimate (“learn”)

I ε is a random error

y = signal + noise

Statistical learning typically focuses on estimation of “signal”, with
minimal attention given to “noise”.



A one-dimensional regression example

I One dataset (“training data”) and 3 different regression
models.

I Polynomial regression y = β0 + β1x + β2x2 + . . .+ βdxd + ε.

I Objectives:
1) choose flexibility (d) 2) estimate parameters (β’s)

I Prediction model: f̂ (x) = β̂0 + β̂1x + β̂2x2 + . . .+ β̂dxd
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How to choose a suitable flexibility?

One very general approach: use a test set.

I A set of data points not used to estimate the parameters.

I Plot below: errors on training and test sets.
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How to choose a suitable flexibility?

In this case (an order d = 21 polynomial), test set errors are larger.

This suggests our model may be too flexible and a smaller d
should be used.
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Training and test errors as a function of flexibility
Returning to the 3 different models (left panel), we can compute
the mean squared error for a training or a test set.

MSE =
1

n

n∑
i=1

(yi − f̂ (xi ))2

MSE will vary as a function of flexibility (right panel):
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The bias-variance trade-off

I The linear model is not flexible enough: biased.

I The order 21 polynomial is too flexible: variable.

This is the bias variance trade-off
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The bias-variance trade-off
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The bias-variance trade-off

Combine the 3 fits in a single plot:
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Other one-dimensional examples

True function is nearly linear, noise level is high
(previous example was nonlinear, high noise)
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Other one-dimensional examples

True function is nonlinear, noise level is low
What’s the best flexibility? It depends!
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Supervised learning

In the three examples, we can break down the MSE into bias and
variance:

nonlinear linear nonlinear
high noise high noise low noise
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K-nearest neighbours with K=10
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K-nearest neighbours with K=10

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

0 20 40 60 80

4
5

6
7

8
9

x

y We want to
predict y at
x = 50.



K-nearest neighbours with K=10
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K-nearest neighbours with K=10
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KNN results for K=1 and K=9

I Predictions are
piecewise
constant

I K = 1 high
variance, low
bias

I K = 9 higher
bias, lower
variance



KNN vs. linear regression: Rounds 1 and 2

True function and KNN fit test error
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KNN vs. linear regression: Round 3

True function = function of x1 only, with additional irrelevant
predictors.

Below: MSE vs. flexibility (1/k) as dimension p increases.
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... This is the curse of dimensionality.



The curse of dimensionality
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KNN vs. linear regression

Remember the basic model

y = f (x) + ε

Linear regression:

I Makes strong assumptions about f (x): linearity, additivity

I Also assumes a probability model for error ε.

I Has “flexibility parameter(s)” (e.g., polynomial degree)

KNN:

I Makes no assumptions about f (x) or error ε.

I Has a “flexibility parameter” (k neighbours).



Choosing model flexibility

What model is best? What flexibility parameter to choose? It
depends on...

I True function f (x)

I Noise level

I Training set sample size

I Dimensionality of the input space

I ...

How do you choose?
I Our “test set” in examples was stylized

I Shouldn’t extra observations be used to train the model?

I Related and more realistic approach: Cross-validation.

I For models that make stronger assumptions, inferential
methods are available.



Interlude

Before discussing cross-validation, I’ll answer the unasked question:

Hugh, have you no shame? 50 points with a single predictor
is not “big data” or “statistical learning”! And I think I
learned KNN in preschool!

Maybe not, but:

I The bias-variance trade-off is central to statistical learning

I Most models use some combination of strong assumptions
(linear model) and local modelling (knn)

I Can I send my kids to your preschool?

I By the way, I lied about using “polynomial regression”.
Smoothing splines were actually used.
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Cross-Validation

A problem with the “test set” idea described earlier: It’s wasteful
to not use all your data to train a model.

Idea #1: Train on 80%, test on 20%

I 80% of the data will resemble the full dataset.

Another problem: Randomness of data splitting and small test set
leads to noisy results.
Idea #2: Repeat idea #1, for different splits of the data.

I Repetition reduces variation due to random splitting.

I This is 5-fold cross-validation.



Picture of 5-fold CV
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I White box = (sideways) data matrix with n observations.
I In each of 5 folds (coloured rows) ...

I Train on blue 80%
I Test on beige 20%

I ... Then average the results over the 5 “folds”.

I ... Once you’ve chosen your flexibility parameter (e.g. k in
KNN), use 100% of the data to retrain and make predictions.



Cross-Validation approximates the test error

I The actual test error can only be known with an infinite
number of test observations.

I CV approximates this.

I For the 1-dimensional polynomial regression problems, the CV
curve is a decent approximation to the true (blue) curve.
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But what about statistical inference?

Remember the basic model

y = f (x) + ε

I CV helps us find a good estimate of f (x).

I But all we get is a point estimate. We don’t get uncertainty
(e.g. prediction intervals).

I Inferential methods in Statistics can effectively provide
uncertainty quantification.

I Easiest for simple models, in which parameter estimates are
linear functions of the data (e.g. linear regression).



Inference for complex models: Bootstrap

I (Freqentist) Inference: Under repeated sampling of training
sets from the population, how does my estimator behave?

I If we could sample multiple training sets, we could directly
calculate an estimator’s distribution.

I But we can’t.

I Bootstrap: Pretend the training sample is the population.
Resample with replacement a pseudo-training-sample of the
same size, and apply your estimator to it. Repeat.



Inference for complex models: Bootstrap

2.8 5.3 3 

1.1 2.1 2 

2.4 4.3 1 

Y X Obs 

2.8 5.3 3 

2.4 4.3 1 

2.8 5.3 3 

Y X Obs 

2.4 4.3 1 

2.8 5.3 3 

1.1 2.1 2 

Y X Obs 

2.4 4.3 1 

1.1 2.1 2 

1.1 2.1 2 

Y X Obs 

Original Data (Z) 

1*
Z

2*
Z

Z
*B

1*α̂

2*α̂

α̂*B

!!

!!

!!

!!

!

!!

!!

!!

!!

!!

!!

!!

!!



Inference for complex models: Bootstrap

Big data: If we can’t analyze the full data, how can we analyze
hundreds of similar-sized bootstrap resamplings?

I “Bag of little bootstraps” by Kleiner, Talwalkar, Sarkar and
Jordan (JRSS-B 2014)

I Approximates the bootstrap using faster computation
(subsampling and reweighting).



Inference for complex models: Bayes

I Bayesian methods treat all unknown parameters as random
variables.

I Convenient mechanism to quantify uncertainty for “tuning
parameters”, such as order of polynomial, k in KNN, etc.

I Posterior distributions combine data (likelihood) and prior
belief, giving full inference.

I Computation typically carried out by simulation (Markov
chain Monte Carlo, MCMC).

I MCMC makes it easy to compute inferential statements for
arbitrary functions of parameters.

I As with the Bootstrap, big data is challenging (see
“Consensus Bayes” talk by Steve Scott).
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Classification

Y is a category (e.g. 2 categories - orange / purple).
Example with two-dimensional input x = (x1, x2):
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Pr(Y = orange |X ) is a function like f (x), and includes a random
error model.



Classification

KNN with K = 10 does quite well:
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KNN: K=10



Classification

A test set or CV can be used to choose flexibility (e.g. K ).

I Similar bias/variance issues.
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Big ideas: additive models

Strong assumption of linear regression: Effect of varying x1 does
not depend on value of other x ’s.

Y = β0 + β1x1 + β2x2 + . . . βpxp + ε

Generalize to have additive model with univariate functions:

Y = β0 + g1(x1) + g2(x2) + . . . gp(xp) + ε

I Retains ease of interpretation.

I Estimation of p separate univariate functions much easier
than estimation of a single f (x1, x2, . . . , xp).

I Extension: allow some low-order interactions



Big ideas: variable selection

With many predictors, we may expect many βj = 0. But which
ones?

Y = β0 + β1x1 + β2x2 + . . . βpxp + ε

Replace usual least squares criterion

minimize
n∑

i=1

(yi − ŷi )
2 over β0 . . . , βp

with a penalized version (Lasso, Tibshirani 1996)

minimize
n∑

i=1

(yi − ŷi )
2 + λ

p∑
j=1

|βj | over β0 . . . , βp

Second term constrains β’s to be small or zero.
See Richard Lockhart’s talk on inference....



Big ideas: dimension reduction

y = f (g(x)) + ε

I The function g maps a high-dimensional input vector x to a
lower-dimensional space.

I What’s the point? Isn’t f (g(x)) just another function h(x)?
I Idea is to estimate g without over-training.

I Principal component analysis seeks projections αT
1 x , αT

2 x , ...
with maximal variance. These are estimated without using Y
(i.e. unsupervised learning).

I Example: digit recognition x1 = intensity of (1,1) pixel of
image, etc. Functions g(x) of the pixels should capture
structure of the handwritten digits.

I Similar approach in “deep learning”: estimate functions of
inputs without using the response until the final learning step.



Big ideas: neural nets

Nonlinear models with linear regressions at their core...

They have the functional form

f (x) = Ψ

α0 +
∑
i

αiΦ(βi0 +
∑
j

βijxj)


with Ψ,Φ known, nonlinear functions.

I We seek to estimate the coefficients (β’s and α’s).

I Nonlinear regression with many parameters.

A linear combination of...
A nonlinear transformation of ...

A linear combination of ...
the original variables



Big ideas: decision trees
Recursively partition the X space into rectangular regions.

Example: Predict (log) Salary of baseball player, given Years in
major leagues and Hits made last year.

|
Years < 4.5
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I Notice the “local structure” like KNN (in some dimensions).

I We must learn the tree topology (variables used, split values,
etc) and outputs from training data.



Big ideas: decision trees

Decision trees are interpretable, flexible, good at detecting
interactions and automatically select variables.

|
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5.11

6.00 6.74

Years
H

it
s

1

117.5

238

1 4.5 24

R1

R3

R2

But they’re sensitive to noise and terrible at representing additive
structure (try fitting y = β0 + β1x1 + β2x2 + β3x3 with a tree).



Big ideas: ensemble models

Overcome the limitations of a single tree by fitting a “sum of
trees” model.

I Let (T1,M1), . . . , (Tm,Mm) identify a set of m trees and their
terminal node µ’s.

Y = g(x ; T1,M1) + g(x ; T2,M2) + . . .+ g(x ; Tm,Mm) + ε

I For an input value x , each g(x ; Ti ,Mi ) outputs a
corresponding µ

I The prediction is the sum of the µ’s

I Random Forests (Breiman 2001) and Boosting (Freund &
Schapire 1997) are two algorithms for building this model.



Big ideas: ensemble models

Breiman’s random forests (2001) use randomized search and the
bootstrap to perturb individual trees.

I Uses noise sensitivity of trees to build a stable model.

Freund and Schapire’s boosting algorithm (1997) encourages
each tree to fit structure not captured by the other trees.

I Enables an additive model to be fit.

I Friedman (2001) presents a more statistically motivated
boosting algorithm.

The model

Y = g(x ; T1,M1) + g(x ; T2,M2) + . . .+ g(x ; Tm,Mm) + ε

also forms the basis for Bayesian Additive Regression Trees
(BART; Chipman George and McCulloch 2010).

I Full Bayesian inference + extensible error models.



Big ideas: support vector machines

Originated as a 2-class classification problem (Vapnik, 1996).
Approach: find a hyperplane that separates the input space into
two regions, maximally separating two classes.
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Big ideas: support vector machines

Two other key ideas:

1. Allow some misclassifications (amount is a tuning parameter).

2. Transform input vector X into a higher-dimensional space
where a hyperplane is more likely to separate classes (often a
parametrized transformation).

Comments on point 2:

I A “kernel trick” avoids the need to actually compute the
high-dimensional mapping.

I Expensive algorithm - O(n2) for n observations.

SVM is one of many Kernel methods for learning.
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Some thoughts

Rich error distributions: A soon-to-be big idea?

y = f (x) + ε

We’ve focused mostly on estimating f (x).
“Traditional” statistics puts more into the error model:

I time series and spatial data have correlated errors

I mixed models have multilevel error structure, including
longitudinal data

I survey sampling has variances induced by the sampling plan



Some thoughts

Uncertainty quantification
Michael Jordan: “We have to have error bars around all our
predictions. That is something that’s missing in much of the
current machine learning literature. ”

Huh? With big data, won’t all your error bars be 0?

Not necessarily:

I Complexity often grows with sample size: with thousands of
variables, there will still be uncertainty.

I As large samples drive down sampling variation, other source
of sample error gain prominence: biased sampling, correlated
errors, etc.



Some thoughts: Summary

Key ideas:

I Bias/variance trade-off

I Cross-validation to choose flexibility

I Inference is possible (and under-appreciated)
I Fancy methods try to introduce assumptions in a way that

they’re flexible:
I variable selection / dimension reduction
I additivity and low-dimensional functions
I transformations

I There’s a lot of room to insert statistical thinking into
statistical and machine learning.


	Introduction
	Cartoon examples of supervised learning
	Cross-validation and computational methods for inference
	Classification
	Big ideas in statistical learning
	Some thoughts

