
An Overview of Statistical Learning

Hugh Chipman

Acadia University

January 12, 2015

Some of the figures in this presentation are taken from ”An Introduction to Statistical Learning, with applications
in R” (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani.

Outline

Introduction

Cartoon examples of supervised learning

Cross-validation and computational methods for inference

Classification

Big ideas in statistical learning

Some thoughts

2014 AARMS summer school class (Sunny Wang, Statistical
Learning co-teacher 2nd from right, first row)

Primary source: Introduction to Statistical
Learning with Applications in R by James,
Witten, Hastie and Tibshirani

Some other resources:

I Statistical Learning and Data Mining,
Hastie, Tibshirani and Friedman

I Pattern Recognition and Machine
Learning, Bishop

I Bayesian Methods for Nonlinear
Classification and Regression, Denison,
Holmes, Mallick and Smith.

Some examples of statistical learning

Wage data : Predict salary using demographic variables

20 40 60 80

5
0

1
0

0
2

0
0

3
0

0

Age

W
a

g
e

2003 2006 2009

5
0

1
0

0
2

0
0

3
0

0

Year

W
a

g
e

1 2 3 4 5

5
0

1
0

0
2

0
0

3
0

0

Education Level

W
a

g
e

Plots show dependence of wage on individual predictors

Some examples of statistical learning

Drug discovery:

I Identify compounds with desirable effect on biological target

I Response variable: Activity (inactive/active)

I Explanatory variables: Molecular descriptors

I Use high throughput screening to test thousands of
compounds, then build a model to predict activity for other
compounds.

Some examples of statistical learning

Some examples of statistical learning: Supervised Learning

The wage and drug discovery problems are examples of Supervised
Learning.

I We seek to predict a response Y using predictors X .

I We have available a training sample of (X ,Y) pairs.

I Continuous response (wage) ⇒ “regression”

I Categorical response (drug discovery) ⇒ “classification”

Although not the focus of this overview, there are also methods for
unsupervised learning

I Discover structure in X without an observed Y .

I Clustering, principal component analysis, graphical models, ...

An unsupervised learning example

I Engine assembly
process.

I Steel valve seats
force-fitted into
cylinder head.

I Data: force profile vs.
time for each
insertion

I Problem: some
insertions bad, but we
can’t tell which ones.

An unsupervised learning example

0 20 40 60 80 100

0
10

00
20

00
30

00
40

00
50

00

Mean Curves by Cluster (February)

F
or

ce

m1 = 164
m2 = 465
m3 = 36

I Each observation is a
curve

I We have thousands of
curves

I Try to group together
curves and identify
anomalous insertions

I “grouping” =
“clustering”

Outline

Introduction

Cartoon examples of supervised learning

Cross-validation and computational methods for inference

Classification

Big ideas in statistical learning

Some thoughts

Regression

y = f (x) + ε

I y = response variable

I x = predictor variable(s)

I f (x) is an unknown function we wish to estimate (“learn”)

I ε is a random error

y = signal + noise

Statistical learning typically focuses on estimation of “signal”, with
minimal attention given to “noise”.

A one-dimensional regression example

I One dataset (“training data”) and 3 different regression
models.

I Polynomial regression y = β0 + β1x + β2x2 + . . .+ βdxd + ε.

I Objectives:
1) choose flexibility (d) 2) estimate parameters (β’s)

I Prediction model: f̂ (x) = β̂0 + β̂1x + β̂2x2 + . . .+ β̂dxd

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

0 20 40 60 80

4
5

6
7

8
9

linear

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

0 20 40 60 80

4
5

6
7

8
9

4th order polynomial

y

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

0 20 40 60 80

4
5

6
7

8
9

21st order polynomial

y

How to choose a suitable flexibility?

One very general approach: use a test set.

I A set of data points not used to estimate the parameters.

I Plot below: errors on training and test sets.

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

0 20 40 60 80

4
5

6
7

8
9

training set predictions

x

y

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●●

●

0 20 40 60 80 100

4
5

6
7

8
9

test set predictions

x

y

How to choose a suitable flexibility?

In this case (an order d = 21 polynomial), test set errors are larger.

This suggests our model may be too flexible and a smaller d
should be used.

training errors

absolute error

F
re

qu
en

cy

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
5

10
15

20
25

30

test errors

absolute error

F
re

qu
en

cy

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
5

10
15

20
25

30

Training and test errors as a function of flexibility
Returning to the 3 different models (left panel), we can compute
the mean squared error for a training or a test set.

MSE =
1

n

n∑
i=1

(yi − f̂ (xi))2

MSE will vary as a function of flexibility (right panel):

0 20 40 60 80 100

2
4

6
8

1
0

1
2

X

Y

2 5 10 20

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

Flexibility

M
e
a
n
 S

q
u
a
re

d
 E

rr
o
r

I monotone
decreasing
shape for
training set

I “U” shape
for test set

The bias-variance trade-off

I The linear model is not flexible enough: biased.

I The order 21 polynomial is too flexible: variable.

This is the bias variance trade-off

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

0 20 40 60 80

4
5

6
7

8
9

linear

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

0 20 40 60 80

4
5

6
7

8
9

4th order polynomial

y

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

0 20 40 60 80

4
5

6
7

8
9

21st order polynomial

y

The bias-variance trade-off

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

0 20 40 60 80

4
5

6
7

8
9

x

linear

fitted
true

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

0 20 40 60 80

4
5

6
7

8
9

x

y

4th order polynomial

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

0 20 40 60 80

4
5

6
7

8
9

x

y

21st order polynomial

●

●

●

●
●

●
●

●●

●

●
●

●
●

●●

●

●●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●
●

●

● ●

0 20 40 60 80

4
5

6
7

8
9

x

●

●

●

●
●

●
●

●●

●

●
●

●
●

●●

●

●●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●
●

●

● ●

0 20 40 60 80

4
5

6
7

8
9

x

y

●

●

●

●
●

●
●

●●

●

●
●

●
●

●●

●

●●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●
●

●

● ●

0 20 40 60 80

4
5

6
7

8
9

x

y

●●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●
●

● ●

●

●

●

●
●

●

●

●

●●

●

0 20 40 60 80

4
5

6
7

8
9

●●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●
●

● ●

●

●

●

●
●

●

●

●

●●

●

0 20 40 60 80

4
5

6
7

8
9

y

●●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●
●

● ●

●

●

●

●
●

●

●

●

●●

●

0 20 40 60 80

4
5

6
7

8
9

y

Training set 1

Training set 2

Training set 3

The bias-variance trade-off

Combine the 3 fits in a single plot:

0 20 40 60 80 100

3
4

5
6

7
8

9

linear

x

y

0 20 40 60 80 100

3
4

5
6

7
8

9

4th order polynomial

x

y

0 20 40 60 80 100

3
4

5
6

7
8

9

21st order polynomial

x

y

High bias Just Low bias
Low variance right High variance

Other one-dimensional examples

True function is nearly linear, noise level is high
(previous example was nonlinear, high noise)

0 20 40 60 80 100

2
4

6
8

1
0

1
2

X

Y

2 5 10 20

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

Flexibility

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

Other one-dimensional examples

True function is nonlinear, noise level is low
What’s the best flexibility? It depends!

0 20 40 60 80 100

−
1

0
0

1
0

2
0

X

Y

2 5 10 20

0
5

1
0

1
5

2
0

Flexibility

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

Supervised learning

In the three examples, we can break down the MSE into bias and
variance:

nonlinear linear nonlinear
high noise high noise low noise

2 5 10 20

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

Flexibility

2 5 10 20

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

Flexibility

2 5 10 20

0
5

1
0

1
5

2
0

Flexibility

MSE
Bias
Var

K-nearest neighbours with K=10

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

0 20 40 60 80

4
5

6
7

8
9

x

y

K-nearest neighbours with K=10

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

0 20 40 60 80

4
5

6
7

8
9

x

y We want to
predict y at
x = 50.

K-nearest neighbours with K=10

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

0 20 40 60 80

4
5

6
7

8
9

x

y

●
●

●

●

●

●

●

●

●

●

Use 10
nearest
neighbours.

K-nearest neighbours with K=10

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

0 20 40 60 80

4
5

6
7

8
9

x

y

●
●

●

●

●

●

●

●

●

●

Prediction is
average y of
the 10
nearest
neighbours

KNN results for K=1 and K=9

I Predictions are
piecewise
constant

I K = 1 high
variance, low
bias

I K = 9 higher
bias, lower
variance

KNN vs. linear regression: Rounds 1 and 2

True function and KNN fit test error

−1.0 −0.5 0.0 0.5 1.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

0.2 0.5 1.0
0

.0
0

0
.0

2
0

.0
4

0
.0

6
0

.0
8

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

−1.0 −0.5 0.0 0.5 1.0

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

0.2 0.5 1.0

0
.0

0
0

.0
5

0
.1

0
0

.1
5

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

y
y

x

x

1/K

1/K

Near-linear: KNN
can do as well as
regression

Non-linear: KNN
beats regression

Note use of 1/K as “flexibility”
axis: small K ⇒ more flexibility

KNN vs. linear regression: Round 3

True function = function of x1 only, with additional irrelevant
predictors.

Below: MSE vs. flexibility (1/k) as dimension p increases.

0.2 0.5 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

p=1

0.2 0.5 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

p=2

0.2 0.5 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

p=3

0.2 0.5 1.0
0

.0
0

.2
0

.4
0

.6
0

.8
1

.0

p=4

0.2 0.5 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

p=10

0.2 0.5 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

p=20

M
e
a
n
 S

q
u
a
re

d
 E

rr
o
r

1/K

KNN fails with many irrelevant predictors.
... This is the curse of dimensionality.

The curse of dimensionality

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

−3 −2 −1 0 1 2

−
3

−
2

−
1

0
1

2

p = 2 dimensions

x1

x2

p = 2 dimensions

interpoint distances

F
re

qu
en

cy
0 1 2 3 4 5

0
20

0
40

0
60

0
80

0
10

00

p = 10 dimensions

interpoint distances

F
re

qu
en

cy

0 2 4 6 8

0
20

0
40

0
60

0
80

0
10

00

p = 100 dimensions

interpoint distances

F
re

qu
en

cy

0 5 10 15

0
20

0
40

0
60

0
80

0

I Simulate
independent
N(0,1) data in
p dimensions.

I Calculate all
interpoint
distances.

I In high
dimensions, all
points are far
apart.

KNN vs. linear regression

Remember the basic model

y = f (x) + ε

Linear regression:

I Makes strong assumptions about f (x): linearity, additivity

I Also assumes a probability model for error ε.

I Has “flexibility parameter(s)” (e.g., polynomial degree)

KNN:

I Makes no assumptions about f (x) or error ε.

I Has a “flexibility parameter” (k neighbours).

Choosing model flexibility

What model is best? What flexibility parameter to choose? It
depends on...

I True function f (x)

I Noise level

I Training set sample size

I Dimensionality of the input space

I ...

How do you choose?
I Our “test set” in examples was stylized

I Shouldn’t extra observations be used to train the model?

I Related and more realistic approach: Cross-validation.

I For models that make stronger assumptions, inferential
methods are available.

Interlude

Before discussing cross-validation, I’ll answer the unasked question:

Hugh, have you no shame? 50 points with a single predictor
is not “big data” or “statistical learning”! And I think I
learned KNN in preschool!

Maybe not, but:

I The bias-variance trade-off is central to statistical learning

I Most models use some combination of strong assumptions
(linear model) and local modelling (knn)

I Can I send my kids to your preschool?

I By the way, I lied about using “polynomial regression”.
Smoothing splines were actually used.

Outline

Introduction

Cartoon examples of supervised learning

Cross-validation and computational methods for inference

Classification

Big ideas in statistical learning

Some thoughts

Cross-Validation

A problem with the “test set” idea described earlier: It’s wasteful
to not use all your data to train a model.

Idea #1: Train on 80%, test on 20%

I 80% of the data will resemble the full dataset.

Another problem: Randomness of data splitting and small test set
leads to noisy results.
Idea #2: Repeat idea #1, for different splits of the data.

I Repetition reduces variation due to random splitting.

I This is 5-fold cross-validation.

Picture of 5-fold CV
 !"!#!!$!

 !%&!'!!!(%!

 !%&!'!!!(%!

 !%&!'!!!(%! !%&!'!!!(%!

 !%&!'!!!(%!

 !%&!'!!!(%!

I White box = (sideways) data matrix with n observations.
I In each of 5 folds (coloured rows) ...

I Train on blue 80%
I Test on beige 20%

I ... Then average the results over the 5 “folds”.

I ... Once you’ve chosen your flexibility parameter (e.g. k in
KNN), use 100% of the data to retrain and make predictions.

Cross-Validation approximates the test error

I The actual test error can only be known with an infinite
number of test observations.

I CV approximates this.

I For the 1-dimensional polynomial regression problems, the CV
curve is a decent approximation to the true (blue) curve.

2 5 10 20

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

Flexibility

M
e
a
n
 S

q
u
a
re

d
 E

rr
o
r

2 5 10 20

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

Flexibility

M
e
a
n
 S

q
u
a
re

d
 E

rr
o
r

2 5 10 20
0

5
1
0

1
5

2
0

Flexibility

M
e
a
n
 S

q
u
a
re

d
 E

rr
o
r

But what about statistical inference?

Remember the basic model

y = f (x) + ε

I CV helps us find a good estimate of f (x).

I But all we get is a point estimate. We don’t get uncertainty
(e.g. prediction intervals).

I Inferential methods in Statistics can effectively provide
uncertainty quantification.

I Easiest for simple models, in which parameter estimates are
linear functions of the data (e.g. linear regression).

Inference for complex models: Bootstrap

I (Freqentist) Inference: Under repeated sampling of training
sets from the population, how does my estimator behave?

I If we could sample multiple training sets, we could directly
calculate an estimator’s distribution.

I But we can’t.

I Bootstrap: Pretend the training sample is the population.
Resample with replacement a pseudo-training-sample of the
same size, and apply your estimator to it. Repeat.

Inference for complex models: Bootstrap

2.8 5.3 3

1.1 2.1 2

2.4 4.3 1

Y X Obs

2.8 5.3 3

2.4 4.3 1

2.8 5.3 3

Y X Obs

2.4 4.3 1

2.8 5.3 3

1.1 2.1 2

Y X Obs

2.4 4.3 1

1.1 2.1 2

1.1 2.1 2

Y X Obs

Original Data (Z)

1*
Z

2*
Z

Z
*B

1*α̂

2*α̂

α̂*B

!!

!!

!!

!!

!

!!

!!

!!

!!

!!

!!

!!

!!

Inference for complex models: Bootstrap

Big data: If we can’t analyze the full data, how can we analyze
hundreds of similar-sized bootstrap resamplings?

I “Bag of little bootstraps” by Kleiner, Talwalkar, Sarkar and
Jordan (JRSS-B 2014)

I Approximates the bootstrap using faster computation
(subsampling and reweighting).

Inference for complex models: Bayes

I Bayesian methods treat all unknown parameters as random
variables.

I Convenient mechanism to quantify uncertainty for “tuning
parameters”, such as order of polynomial, k in KNN, etc.

I Posterior distributions combine data (likelihood) and prior
belief, giving full inference.

I Computation typically carried out by simulation (Markov
chain Monte Carlo, MCMC).

I MCMC makes it easy to compute inferential statements for
arbitrary functions of parameters.

I As with the Bootstrap, big data is challenging (see
“Consensus Bayes” talk by Steve Scott).

Outline

Introduction

Cartoon examples of supervised learning

Cross-validation and computational methods for inference

Classification

Big ideas in statistical learning

Some thoughts

Classification

Y is a category (e.g. 2 categories - orange / purple).
Example with two-dimensional input x = (x1, x2):

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o o
o

o

o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o
o

oo

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

oo

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

X1

X
2

Pr(Y = orange |X) is a function like f (x), and includes a random
error model.

Classification

KNN with K = 10 does quite well:

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o o
o

o

o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o
o

oo

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

oo

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

X1

X
2

KNN: K=10

Classification

A test set or CV can be used to choose flexibility (e.g. K).

I Similar bias/variance issues.

0.01 0.02 0.05 0.10 0.20 0.50 1.00

0
.0

0
0
.0

5
0
.1

0
0
.1

5
0
.2

0

1/K

E
rr

o
r

R
a
te

Training Errors

Test Errors

Outline

Introduction

Cartoon examples of supervised learning

Cross-validation and computational methods for inference

Classification

Big ideas in statistical learning

Some thoughts

Big ideas: additive models

Strong assumption of linear regression: Effect of varying x1 does
not depend on value of other x ’s.

Y = β0 + β1x1 + β2x2 + . . . βpxp + ε

Generalize to have additive model with univariate functions:

Y = β0 + g1(x1) + g2(x2) + . . . gp(xp) + ε

I Retains ease of interpretation.

I Estimation of p separate univariate functions much easier
than estimation of a single f (x1, x2, . . . , xp).

I Extension: allow some low-order interactions

Big ideas: variable selection

With many predictors, we may expect many βj = 0. But which
ones?

Y = β0 + β1x1 + β2x2 + . . . βpxp + ε

Replace usual least squares criterion

minimize
n∑

i=1

(yi − ŷi)
2 over β0 . . . , βp

with a penalized version (Lasso, Tibshirani 1996)

minimize
n∑

i=1

(yi − ŷi)
2 + λ

p∑
j=1

|βj | over β0 . . . , βp

Second term constrains β’s to be small or zero.
See Richard Lockhart’s talk on inference....

Big ideas: dimension reduction

y = f (g(x)) + ε

I The function g maps a high-dimensional input vector x to a
lower-dimensional space.

I What’s the point? Isn’t f (g(x)) just another function h(x)?
I Idea is to estimate g without over-training.

I Principal component analysis seeks projections αT
1 x , αT

2 x , ...
with maximal variance. These are estimated without using Y
(i.e. unsupervised learning).

I Example: digit recognition x1 = intensity of (1,1) pixel of
image, etc. Functions g(x) of the pixels should capture
structure of the handwritten digits.

I Similar approach in “deep learning”: estimate functions of
inputs without using the response until the final learning step.

Big ideas: neural nets

Nonlinear models with linear regressions at their core...

They have the functional form

f (x) = Ψ

α0 +
∑
i

αiΦ(βi0 +
∑
j

βijxj)


with Ψ,Φ known, nonlinear functions.

I We seek to estimate the coefficients (β’s and α’s).

I Nonlinear regression with many parameters.

A linear combination of...
A nonlinear transformation of ...

A linear combination of ...
the original variables

Big ideas: decision trees
Recursively partition the X space into rectangular regions.

Example: Predict (log) Salary of baseball player, given Years in
major leagues and Hits made last year.

|
Years < 4.5

Hits < 117.5

5.11

6.00 6.74

Years

H
it
s

1

117.5

238

1 4.5 24

R1

R3

R2

I Notice the “local structure” like KNN (in some dimensions).

I We must learn the tree topology (variables used, split values,
etc) and outputs from training data.

Big ideas: decision trees

Decision trees are interpretable, flexible, good at detecting
interactions and automatically select variables.

|
Years < 4.5

Hits < 117.5

5.11

6.00 6.74

Years
H

it
s

1

117.5

238

1 4.5 24

R1

R3

R2

But they’re sensitive to noise and terrible at representing additive
structure (try fitting y = β0 + β1x1 + β2x2 + β3x3 with a tree).

Big ideas: ensemble models

Overcome the limitations of a single tree by fitting a “sum of
trees” model.

I Let (T1,M1), . . . , (Tm,Mm) identify a set of m trees and their
terminal node µ’s.

Y = g(x ; T1,M1) + g(x ; T2,M2) + . . .+ g(x ; Tm,Mm) + ε

I For an input value x , each g(x ; Ti ,Mi) outputs a
corresponding µ

I The prediction is the sum of the µ’s

I Random Forests (Breiman 2001) and Boosting (Freund &
Schapire 1997) are two algorithms for building this model.

Big ideas: ensemble models

Breiman’s random forests (2001) use randomized search and the
bootstrap to perturb individual trees.

I Uses noise sensitivity of trees to build a stable model.

Freund and Schapire’s boosting algorithm (1997) encourages
each tree to fit structure not captured by the other trees.

I Enables an additive model to be fit.

I Friedman (2001) presents a more statistically motivated
boosting algorithm.

The model

Y = g(x ; T1,M1) + g(x ; T2,M2) + . . .+ g(x ; Tm,Mm) + ε

also forms the basis for Bayesian Additive Regression Trees
(BART; Chipman George and McCulloch 2010).

I Full Bayesian inference + extensible error models.

Big ideas: support vector machines

Originated as a 2-class classification problem (Vapnik, 1996).
Approach: find a hyperplane that separates the input space into
two regions, maximally separating two classes.

−1 0 1 2 3

−
1

0
1

2
3

X1

X
2

Big ideas: support vector machines

Two other key ideas:

1. Allow some misclassifications (amount is a tuning parameter).

2. Transform input vector X into a higher-dimensional space
where a hyperplane is more likely to separate classes (often a
parametrized transformation).

Comments on point 2:

I A “kernel trick” avoids the need to actually compute the
high-dimensional mapping.

I Expensive algorithm - O(n2) for n observations.

SVM is one of many Kernel methods for learning.

Outline

Introduction

Cartoon examples of supervised learning

Cross-validation and computational methods for inference

Classification

Big ideas in statistical learning

Some thoughts

Some thoughts

Rich error distributions: A soon-to-be big idea?

y = f (x) + ε

We’ve focused mostly on estimating f (x).
“Traditional” statistics puts more into the error model:

I time series and spatial data have correlated errors

I mixed models have multilevel error structure, including
longitudinal data

I survey sampling has variances induced by the sampling plan

Some thoughts

Uncertainty quantification
Michael Jordan: “We have to have error bars around all our
predictions. That is something that’s missing in much of the
current machine learning literature. ”

Huh? With big data, won’t all your error bars be 0?

Not necessarily:

I Complexity often grows with sample size: with thousands of
variables, there will still be uncertainty.

I As large samples drive down sampling variation, other source
of sample error gain prominence: biased sampling, correlated
errors, etc.

Some thoughts: Summary

Key ideas:

I Bias/variance trade-off

I Cross-validation to choose flexibility

I Inference is possible (and under-appreciated)
I Fancy methods try to introduce assumptions in a way that

they’re flexible:
I variable selection / dimension reduction
I additivity and low-dimensional functions
I transformations

I There’s a lot of room to insert statistical thinking into
statistical and machine learning.

	Introduction
	Cartoon examples of supervised learning
	Cross-validation and computational methods for inference
	Classification
	Big ideas in statistical learning
	Some thoughts

