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Some of the figures in this presentation are taken from " An Introduction to Statistical Learning, with applications
in R" (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani.
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Primary source: Introduction to Statistical
Learning with Applications in R by James,
Witten, Hastie and Tibshirani

Gareth James
Daniela Witten
Trevor Hastie
Robert Tibshirani

Some other resources:

» Statistical Learning and Data Mining,
Hastie, Tibshirani and Friedman

with Applications in R

» Pattern Recognition and Machine
Learning, Bishop

&) Springer

» Bayesian Methods for Nonlinear
Classification and Regression, Denison,
Holmes, Mallick and Smith.



Some examples of statistical learning

Wage data :
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Some examples of statistical learning

Drug discovery:

>

>

>

Identify compounds with desirable effect on biological target
Response variable: Activity (inactive/active)
Explanatory variables: Molecular descriptors

Use high throughput screening to test thousands of
compounds, then build a model to predict activity for other
compounds.



Some examples of statistical learning
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Some examples of statistical learning: Supervised Learning

The wage and drug discovery problems are examples of Supervised
Learning.

> We seek to predict a response Y using predictors X.
» We have available a training sample of (X, Y) pairs.
» Continuous response (wage) = “regression”

» Categorical response (drug discovery) = “classification”

Although not the focus of this overview, there are also methods for
unsupervised learning

» Discover structure in X without an observed Y.

» Clustering, principal component analysis, graphical models, ...



An unsupervised learning example
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An

Force

unsupervised learning example

1000 2000 3000 4000 5000

0

Mean Curves by Cluster (February)

= ml=164

60

80

100

Each observation is a
curve

We have thousands of
curves

Try to group together
curves and identify
anomalous insertions

“grouping” =
“clustering”
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Cartoon examples of supervised learning



Regression

y="Ff(x)+e

> y = response variable
» x = predictor variable(s)

» f(x) is an unknown function we wish to estimate (“learn”)

v

€ is a random error
y = signal + noise

Statistical learning typically focuses on estimation of “signal”, with
minimal attention given to “noise”.



A one-dimensional regression example

» One dataset (“training data”) and 3 different regression
models.

» Polynomial regression y = By + B1x + Box® + ... + Bgx? + €.
» Objectives:

1) choose flexibility (d) 2) estimate parameters (3's)
» Prediction model: )A‘(x) = Bo + Bix + Box®+ ... + Bgx?

linear 4th order polynomial 21st order




How to choose a suitable flexibility?

One very general approach: use a test set.
> A set of data points not used to estimate the parameters.

> Plot below: errors on training and test sets.

training set predictions test set predictions




How to choose a suitable flexibility?

In this case (an order d = 21 polynomial), test set errors are larger.

This suggests our model may be too flexible and a smaller d
should be used.
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Training and test errors as a function of flexibility

Returning to the 3 different models (left panel), we can compute
the mean squared error for a training or a test set.
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The bias-variance trade-off )
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» The linear model is not flexible enough: biased.
» The order 21 polynomial is too flexible: variable.

This is the bias variance trade-off

linear 4th order polynomial 21st order polynomial




The bias-varianc
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The bias-variance trade-off

Combine the 3 fits in a single plot:

linear 4th order polynomial 21st order polynomial

High bias Just Low bias
Low variance right High variance



Other one-dimensional examples

True function is nearly linear, noise level is high
(previous example was nonlinear, high noise)
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Other one-dimensional examples

True function is nonlinear, noise level is low
What's the best flexibility? It depends!
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Supervised learning E[( Y - ‘?(Y))LI . \
= E(y-461)

In the three examples, we can break down the MSE into ‘bias and

variance:
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K-nearest neighbours with K=10
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K-nearest neighbours with K=10

. We want to
© 1 < . predict y at
) x = 50.




K-nearest neighbours with K=10

- L e Use 10
© SN . nearest
’ neighbours.




K-nearest neighbours with K=10
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KNN results for K=1 and K=9

» Predictions are
piecewise
constant

» K =1 high
variance, low
bias

» K =9 higher
bias, lower
variance




KNN vs. linear regression: Rounds 1 and 2

True function and KNN fit

test error
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KNN vs. linear regression: Round 3

True function = function of x; only, with additional irrelevant
predictors.

Below: MSE vs. flexibility (1/k) as dimension p increases.
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KNN fails with many irrelevant predictors.
... This is the curse of dimensionality.
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interpoint distances

» Simulate
independent
N(0,1) data in
p dimensions.

» Calculate all
interpoint
distances.

» In high
dimensions, all
points are far
apart.



KNN vs. linear regression

Remember the basic model
y="Ff(x)+e

Linear regression:
» Makes strong assumptions about f(x): linearity, additivity
> Also assumes a probability model for error €.
» Has “flexibility parameter(s)” (e.g., polynomial degree)
KNN:
» Makes no assumptions about f(x) or error ¢.

» Has a “flexibility parameter” (k neighbours).



Choosing model flexibility

What model is best? What flexibility parameter to choose? It
depends on...

» True function f(x)

v

Noise level
> Training set sample size
» Dimensionality of the input space
L

How do you choose?

> Qur "test set” in examples was stylized
» Shouldn't extra observations be used to train the model?

» Related and more realistic approach: Cross-validation.

» For models that make stronger assumptions, inferential
methods are available.



Interlude

Before discussing cross-validation, I'll answer the unasked question:

Hugh, have you no shame? 50 points with a single predictor
is not “big data” or “statistical learning”! And | think I
learned KNN in preschool!

Maybe not, but:
» The bias-variance trade-off is central to statistical learning

» Most models use some combination of strong assumptions
(linear model) and local modelling (knn)

» Can | send my kids to your preschool?

» By the way, | lied about using “polynomial regression”.
Smoothing splines were actually used.
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Cross-validation and computational methods for inference



Cross-Validation

A problem with the “test set” idea described earlier: It's wasteful
to not use all your data to train a model.
’Idea #1: Train on 80%, test on 20%

» 80% of the data will resemble the full dataset.

Another problem: Randomness of data splitting and small test set
leads to noisy results.
’ Idea #2: Repeat idea #1, for different splits of the data.

» Repetition reduces variation due to random splitting.

» This is b-fold cross-validation.



Picture of 5-fold CV

[123 n
!
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v

White box = (sideways) data matrix with n observations.
In each of 5 folds (coloured rows) ...

» Train on blue 80%
» Test on beige 20%

> ... Then average the results over the 5 “folds”.

v

» ... Once you've chosen your flexibility parameter (e.g. k in
KNN), use 100% of the data to retrain and make predictions.



Cross-Validation approximates the test error

» The actual test error can only be known with an infinite
number of test observations.

» CV approximates this.

» For the 1-dimensional polynomial regression problems, the CV
curve is a decent approximation to the true (blue) curve.

Mean Squared Error
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But what about statistical inference?

Remember the basic model
y="Ff(x)+e

» CV helps us find a good estimate of f(x).

» But all we get is a point estimate. We don't get uncertainty
(e.g. prediction intervals).

> Inferential methods in Statistics can effectively provide
uncertainty quantification.

» Easiest for simple models, in which parameter estimates are
linear functions of the data (e.g. linear regression).



Inference for complex models: Bootstrap

» (Fregentist) Inference: Under repeated sampling of training
sets from the population, how does my estimator behave?

» If we could sample multiple training sets, we could directly
calculate an estimator’s distribution.

> But we can't.
» Bootstrap: Pretend the training sample is the population.

Resample with replacement a pseudo-training-sample of the
same size, and apply your estimator to it. Repeat.



Inference for complex models: Bootstrap

Obs

X

Y
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2 2.1 1.1
3 53 |28
1 43 |24
Obs | X Y
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2 2.1 | 1.1
1 43 |24




Inference for complex models: Bootstrap

Big data: If we can't analyze the full data, how can we analyze
hundreds of similar-sized bootstrap resamplings?

> “Bag of little bootstraps” by Kleiner, Talwalkar, Sarkar and
Jordan (JRSS-B 2014)

» Approximates the bootstrap using faster computation
(subsampling and reweighting).



Inference for complex models: Bayes

» Bayesian methods treat all unknown parameters as random
variables.

» Convenient mechanism to quantify uncertainty for “tuning
parameters”, such as order of polynomial, k in KNN, etc.

» Posterior distributions combine data (likelihood) and prior
belief, giving full inference.

» Computation typically carried out by simulation (Markov
chain Monte Carlo, MCMC).

» MCMC makes it easy to compute inferential statements for
arbitrary functions of parameters.

» As with the Bootstrap, big data is challenging (see
“Consensus Bayes” talk by Steve Scott).
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Classification



Classification

Y is a category (e.g. 2 categories - orange / purple).
Example with two-dimensional input x = (xy, x2):

X

Xy
Pr(Y = orange |X) is a function like f(x), and includes a random
error model.



Classification

KNN with K = 10 does quite well:

KNN: K=10

X,

Xy



Classification

A test set or CV can be used to choose flexibility (e.g. K).

» Similar bias/variance issues.
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Big ideas in statistical learning



Big ideas: additive models

Strong assumption of linear regression: Effect of varying x; does
not depend on value of other x's.

Y = Bo+ Bix1 + Baxo + ... BpXp + €
Generalize to have additive model with univariate functions:

Y = Bo+g1(x1) + g2(x) + ... gp(xp) + €

> Retains ease of interpretation.

» Estimation of p separate univariate functions much easier
than estimation of a single f(xi, X2, ..., xp).

» Extension: allow some low-order interactions



Big ideas: variable selection

With many predictors, we may expect many 3; = 0. But which

ones?
Y = o+ Bix1+ faxa+ ... Bpxp + €

Replace usual least squares criterion

minimize Z yi)° over Bo---,B8p

with a penalized version (Lasso, Tibshirani 1996)
reju(a}. 2 <o~

n P
minimize Z(y,- -9+ )\Z |Bj| over Bo...,Bp
i=1 j=1

Second term constrains 3’s to be small or zero.
See Richard Lockhart’s talk on inference....



Big ideas: dimension reduction  ( Adan Kala:: .
" Choose o represev&c{hn)

y=1f(g(x))+e

» The function g maps a high-dimensional input vector x to a
lower-dimensional space.
» What's the point? Isn't f(g(x)) just another function h(x)?
> Idea is to estimate g without over-training.
» Principal component analysis seeks projections alTx, a2Tx,
with maximal variance. These are estimated without using Y
(i.e. unsupervised learning).

» Example: digit recognition x; = intensity of (1,1) pixel of
image, etc. Functions g(x) of the pixels should capture
structure of the handwritten digits.

» Similar approach in “deep learning”: estimate functions of
inputs without using the response until the final learning step.



Big ideas: neural nets

Nonlinear models with linear regressions at their core...

They have the functional form

F(x) =V [ag+ > ai®(Bio+ > Bjx)
i J

with W, ® known, nonlinear functions.

» We seek to estimate the coefficients (3's and a's).

> Nonlinear regression with many parameters.

A linear combination of...
A nonlinear transformation of ...
A linear combination of ...
the original variables



Big ideas: decision trees
Recursively partition the X space into rectangular regions.

Example: Predict (log) Salary of baseball player, given Years in

major leagues and Hits made last year.

Years < 4.5

Rs

175

Ryt e

Hits

Ry

Hits <[117.5

Years

» Notice the “local structure” like KNN (in some dimensions).

» We must learn the tree topology (variables used, split values,

etc) and outputs from training data.



Big ideas: decision trees

Decision trees are interpretable, flexible, good at detecting
interactions and automatically select variables.

Ra

Hits

Ry

Rz

Hits <|117.5

Years

But they're sensitive to noise and terrible at representing additive
structure (try fitting y = o + S1x1 + f2x2 + [3x3 with a tree).



Big ideas: ensemble models Not yost
trees

-1 (Robect
/ Bell

Overcome the limitations of a single tree by fitting a “sum of —bleﬂdm_])
trees” model.

» Let (T1,Mi1),...,(Tm, M) identify a set of m trees and their
terminal node pu's.

Y =g(x; Te, M) + g(x; To, o) + ...+ g(x; Tm, Mim) + €

» For an input value x, each g(x; T;, M;) outputs a
corresponding u
> The prediction is the sum of the u's

» Random Forests (Breiman 2001) and Boosting (Freund &
Schapire 1997) are two algorithms for building this model.



Big ideas: ensemble models

Breiman's random forests (2001) use randomized search and the
bootstrap to perturb individual trees.

» Uses noise sensitivity of trees to build a stable model.

Freund and Schapire's boosting algorithm (1997) encourages
each tree to fit structure not captured by the other trees.

» Enables an additive model to be fit.

» Friedman (2001) presents a more statistically motivated
boosting algorithm.

The model
Y =g(x; Ti, M) +g(x; To, M) + ...+ g(x; T, Mim) + €

also forms the basis for Bayesian Additive Regression Trees
(BART; Chipman George and McCulloch 2010).

» Full Bayesian inference + extensible error models.



Big ideas: support vector machines

Originated as a 2-class classification problem (Vapnik, 1996).
Approach: find a hyperplane that separates the input space into
two regions, maximally separating two classes.




Big ideas: support vector machines

Two other key ideas:
1. Allow some misclassifications (amount is a tuning parameter).
2. Transform input vector X into a higher-dimensional space
where a hyperplane is more likely to separate classes (often a
parametrized transformation).
Comments on point 2:
> A “kernel trick” avoids the need to actually compute the
high-dimensional mapping.
» Expensive algorithm - O(n?) for n observations.

SVM is one of many Kernel methods for learning.
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Some thoughts



Some thoughts

Rich error distributions: A soon-to-be big idea?

y="1f(x)+e
We've focused mostly on estimating f(x).
“Traditional” statistics puts more into the error model:
» time series and spatial data have correlated errors

» mixed models have multilevel error structure, including
longitudinal data

» survey sampling has variances induced by the sampling plan



Some thoughts

Uncertainty quantification

Michael Jordan: “We have to have error bars around all our
predictions. That is something that's missing in much of the
current machine learning literature. "

Huh? With big data, won't all your error bars be 07

Not necessarily:

» Complexity often grows with sample size: with thousands of
variables, there will still be uncertainty.

> As large samples drive down sampling variation, other source
of sample error gain prominence: biased sampling, correlated
errors, etc.



Some thoughts: Summary

Key ideas:
» Bias/variance trade-off
» Cross-validation to choose flexibility
» Inference is possible (and under-appreciated)

» Fancy methods try to introduce assumptions in a way that
they're flexible:

» variable selection / dimension reduction
» additivity and low-dimensional functions
» transformations
» There's a lot of room to insert statistical thinking into
statistical and machine learning.
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