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This paper uses ideas for stochastic search implementations of adaptive
Bayesian models, such as those outlined in Denison, Malick and Smith (1998
a,b) and Chipman, George and McCulloch (1998a) and effectively applies these
ideas to logspline density estimation and triogram regression. Interesting com-
parisons are made to assess the effect of greedy search, stochastic search and
model averaging. Such comparisons are valuable, since readily available com-
puting power enables the construction of many methods, and an understanding
of what works is important in developing new methodology.
It is very important to note the role of the prior when adaptive models

are used in conjunction with stochastic searches. Inevitably, priors guide and
temper our wandering in a large space of models. This benefit comes with a
price: the need to select a prior that is appropriate for the problem at hand. It
is important to acknowledge the simple fact that a prior choice represents a bet
on what kind of models we want to consider.
If we skip to the end of the paper and read the discussion, what lessons have

been learned? We have (i) ”.. we have demonstrated a gain .. when appealing
to the more elaborate sampling schemes” (relative to simple greedy search), and
(ii) ”priors play an important role”. These things we know to be true in general
from much experience. The question is: what should be done in practice?
In general, a practical approach usually involves first getting the prior spec-

ification down to a few hyper-parameters (about which we hopefully have some
understanding) and then developing a scheme for making reasonable choices. At
one end of the spectrum we can use automatic methods such as cross-validation
to choose hyper-parameters that are appropriate for the problem at hand. At
the other end of the spectrum we choose ”reasonable values” based on our un-
derstanding and prior beliefs. Often, compromise strategies that combine a
peek at the data with some judgment are effective and somewhat in the spirit
of empirical Bayes. We believe Chipman, George, and McCulloch (2002) is a
good example of this middle ground approach.
We have some general Bayesian insights that help us understand the effects

of these hyper-parameters. Often we can think of prior in two stages: p(Mk) a
prior on ”models”, and p(θk|Mk) a prior on the parameters of a given model.
A set of hyper-parameters would specify a choice for each of these components.
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In section 2 of the paper, θ corresponds to the coefficients β, and Mk would
be (K, t). Both choices can be important. Often we choose p(Mk) to express
the belief that the model is not too large. More subtle is the effect of a choice
p(θ|Mk). If we make the prior too tight we will miss parameter values that
give good fit to the data, diminishing the posterior probability on model Mk. If
we make the prior too spread out, the likelihood will be washed out and again
we diminish the posterior probability. These are the basic facts of odds ratio
calculations.
In section 2 of the paper, the choices of A and λ are the hyper-parameters

the determine the spread of the prior given the model. We know from the
general insight outlined above that these choices will be influential. The paper
discusses these choices in terms of penalties and the AIC. We find the basic
Bayesian intuition about odds ratio calculations is also helpful in understanding
what is going on. It may be helpful to recall that the AIC is just a (very poor)
approximation to the odds ratio calculation.
Table 2 compares the performance of algorithms for various values of λ. We

see that the choice of λ matters. What choice is best? It depends. Based
on table 2, the authors state that choice (vii) is bad, yet it is best in several
scenarios! The question remains: how do you choose λ?
While the authors consider the impact of different prior choices (e.g., for λ),

methods for selection of the prior are not considered. Without such choices,
the use of MCMC technology as a stochastic search by non-Bayesians is more
limited.
One of the most important advantages of Bayesian methods in adaptive

modeling problems is the effectiveness of stochastic search methods such as
MCMC. In applications where the model space is complicated, constructing
an effective chain can be challenging. For example, in the triogram regression
problem, models are arranged somewhat hierarchically, with regions recursively
subdivided into smaller and smaller triangles. Hierarchical structure makes the
construction of an effective chain challenging because it constrains the possible
set of proposals that can be made. Proposals making small local changes are
easiest to make and most likely to be accepted, but a long succession of simple
proposals may need to be accepted for the stochastic search to move on to a
different posterior mode. With this dilemma in mind, we appreciate the impor-
tance of using good proposal steps in effective exploration of the model space.
These transitions need to work within the model constraints (e.g. hierarchy in
triograms) while not being so constrained as to have difficulty moving. Hansen
and Kooperberg have effectively accomplished this by developing a set of pro-
posal steps which move around the space in a natural way while respecting the
nested nature of the models. In some problems, such as logspline density es-
timation, it may be easier to move around the space. In that case, the knots
don’t depend on the order in which they are added.
The authors use a single long chain to explore the model space, which can

be an issue if the posterior on models has many sharp local peaks. In such
situations, MCMC methods can tend to gravitate towards a single mode and
have difficulty in moving to other regions of the model space. We expect such
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issues to arise in the triogram regression problem, for example. Denison et. al.
(1998b) use single chains as well, and by carefully controlling the early stages
of the chain, achieve an algorithm which seems to explore a region of the model
space around a single local maximum. We have found that another effective
technique is to use multiple chains as a means of more fully exploring the space.
Single and multiple chains were explored on a simulated dataset in Chipman,
George and McCulloch (1998a) and the use of multiple chains resulted in a more
complete exploration of the model space.
The authors examine the performance of Bayesian model averaging, which

is an appealing and natural means of improving predictive accuracy. We are
not surprised that greedy methods can be improved upon by a better search
and model averaging. What does surprise us is the omission of a trivial (and
often effective) frequentist competitor: Bootstrapping. The bootstrap has been
used as a method of generating multiple models for model averaging (Breiman
1996), and as an easy way to improve upon greedy search algorithms (Tibshirani
and Knight 1999). In this approach, multiple pseudo datasets are generated by
resampling with replacement the rows of the data matrix, and a (often greedy)
modeling algorithm is applied to each bootstrap dataset. Bootstrapping the
data and averaging over models is an effective and easy way to model aver-
age. It enhances the search by perturbing the data and letting the greedy
algorithm converge to different local maxima. Predictions are improved by av-
eraging across all the different models. We have carried out some experiments
with bootstrapping in the context of Bayesian CART (Chipman, George and
McCulloch 1998b). In the example we considered, we found that bootstrapping
identified a wider variety of good models than a single greedy search, but the
models identified by a bootstrap algorithm were still a subset of those identified
by Bayesian stochastic search procedures.
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