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Summary

This paper considers a linear regression model with binary predictors from the point of
view of graphical models. By considering second-order and higher order interactions as
well as main effects, one is led naturally to consider the joint effects of predictors on
the response. In particular, we introduce the context sensitive regression (CSR) model, in
which the effect of a predictor on the response can depend on the level of another predictor.
By representing such relations as a directed graph, a compact and interpretable modelling
tool is developed. Parallels are identified between a graph-based representation of the
linear model and hypothesis tests concerning equality of various coefficients to each other
or to zero. For the two-way interaction model, we present a simple method to translate a
graph into a set of constraints on a linear model. Extensions and generalizations to higher
order models are also considered. Both frequentist and Bayesian methods for identifying
CSRs are discussed. Finally, examples using both logistic and least squares regression are
used to illustrate the model.
Key Words: Regression Models; Graphical Models; Binary predictors; Higher order in-
teractions.

1 Introduction

The wide-spread use of regression models is partly attributable to their easy interpre-
tation: the parameters provide quantitative information about the way predictors affect
the response variable. As the inclusion of higher order interactions tends to obscure in-
terpretability, particular configurations are often excluded (Peixoto (1990)) or penalized
thorough the use of an underlying prior (Chipman et al. (1996)).

This is sometimes too restrictive: especially in the case of binary predictors, many mod-
els exist that involve higher order terms but still possess straightforward interpretations.
As an illustration, consider the following linear regression model:

E(Y |X1 = x1, X2 = x2) = α + α1x1 + α2x2 + α1,2x1x2, xi ∈ {0, 1}. (1)

If α1,2 = −α1, we have

E(Y |X1 = x1, X2 = x2) = α + α1x1(1− x2) + α2x2. (2)

That is, given x2 = 1, E(Y |X) does not depend on x1. This corresponds to the case
where for one value of a predictor (e.g., for men) a second predictor does not affect the

1



response but for the other value (e.g., for women) it does. Apart of being an easily
interpretable model involving higher order interactions, this example shows also that only
testing which parameters might equal 0 overlooks interesting models.

In order to be able to deal with those situations, we introduce in this paper a class
of regression models and follow an approach inspired by Graphical Models (Lauritzen
(1996)). To this end, we introduce a class of graphs, each one representing a particular
family of distributions characterized by a set of easy interpretable regularities in the
underlying model. This will lead to a two step data analysis: first at the level of a graph
and - only - afterwards at the level of a particular parameterization. In this way, this
paper extends the results of Teugels et al. (1998), Højsgaard (2003) and Corander (2003)
to regression models.

In the sequel C(Y |X) denotes the property of interest of the set of conditional distribu-
tions of Y given the predictors X = (X1, · · · , Xn); two important choices are C(Y |X) =
E(Y |X) and if Y is a binary variable C(Y |X) = logit(P (Y = 1|X)).
As X is a binary vector, without any loss of generality we can suppose that:

C(Y |X) = α +
∑

i

αixi +
∑

i,j

αi,jxixj + · · ·+ α1,···,nx1 · · · xn. (3)

A special case is the so called two-way models:

C(Y |X = x) = α +
∑

i

αixi +
∑

i6=j
αi,jxixj. (4)

Denoting by X−i the vector X excluding the i-th entry, we write

Y⊥Xi|X−i (5)

if the predictor Xi does not affect C(Y |X) whatever the values of the remaining predictors
are; i.e., C(Y |Xi = xi, X−i = x−i) = C(Y |Xi = 1− xi, X−i = x−i), for all x−i.
If the predictor Xi does not affect C(Y |X) only when Xj = xj (but for all x−i,−j), we
write:

Y⊥Xi|Xj = xj, X−i,−j . (6)

The structure of the paper is as follows. In Section 2 the models are formally introduced.
In Section 3 we discuss a case study. As model selection becomes an important issue, we
elaborate in the final section, a Bayesian version that illustrates how apriori information
can be naturally encoded through a prior on the graphs.

2 Context Sensitive Regression Models

2.1 Model Definition

We define a context sensitive regression model (CSR), over (Y,X1, · · · , Xn) as the family
of models for C(Y |X) satisfying a set of constraints of the form (5) and (6). To avoid
redundancy between (5) and (6), by writing Y⊥Xi|Xj = xj, X−i,−j we implicitly assume
that Y 6⊥ Xi|Xj = 1− xj, X−i,−j . When Y⊥Xi given both Xj = 1 and Xj = 0 we write
Y⊥Xi|X−i.
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With each model, a graph is associated: each node corresponds to a variable and con-
nections are drawn between nodes associated with the predictors and the one associated
with the response variable (or more precisely with C(Y |X)). The type of connection
between the response and predictor Xi identifies the effect of Xi on the response:

1. No dependence: the absence of a connection encodes a constraint of the form (5).

2. Partial dependence: a dashed connection encodes a constraint of the form (6);
an arrow starts from the predictor Xj and points to the dashed connection between
Y and Xi; we call Xj the controlling predictor of Xi; we attach the corresponding
value of 1−xj in (6) to the arrow indicating the presence of a relationship (or more
precisely: the absence of an independency) between Y and Xi when Xj = 1− xj.

3. Full dependence: a full connection encodes the absence of any of the above con-
straints. In this case Y depends on Xj no matter what levels are assumed by X−j.

We call two predictors paired if they control each other.

Example 2.1 The graph in Figure 1 represents:
Y⊥X1|X−1, Y⊥X3|X4 = 0, X−3,−4, Y⊥X4|X3 = 1, X−3,−4, Y⊥X5|X6 = 0, X−5,−6,
and Y⊥X7|X6 = 1, X−6,−7.
The variables X3, X4 and X6 are controlling predictors and X3, X4 are paired predictors.

0

1

1

0

PSfrag replacements

Y

X1

X2

X3

X4

X5

X6

X7

Figure 1

As will be shown in the next section, if we suppose a two-way parameterization of the
form (4), the graph translates into:

C(Y |X) = α + α2x2 + α6x6 + α2,6x2x6 + α3,4(1− x3)x4 + α5,6x5x6 + α6,7(1− x6)x7 (7)

with α’s free parameters.

As in the case of Graphical Models, for a given graph those coefficients are set to zero
or constrained in (4) so that the independencies reflected in the graph hold. On the other
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hand, not every restriction on the coefficients can be reflected in the graph. For this
reason we will work in two steps: first at the level of graphs and afterwards at the level
of the parameters.

Opposite to a Graphical Model, a CSR defines a set of conditional distributions P (Y |X)
without revealing the joint distribution P (Y,X). Therefore, questions related to collapsi-
bility can not be answered; e.g., in the above graph: as nothing is specified about the
interaction between X1 and the other predictors, it is not possible to deduce whether
Y⊥X1 or not.

As will be explained below, an important subclass of CSR graphs are regular graphs.

Definition 2.1 A graph is regular if it satisfies the following two conditions:
(A1) at most one arrow arrives at each connection;
(A2) if a predictor Xj controls the connection between Y and Xi, there should be a dashed
or full connection between Y and Xj and the node Xi is the only node that might control
the connection between Y and Xj.

Observe that as a consequence, in a regular graph a non paired controlling predictor
will always be connected to the response predictor with a solid connection.
Each regular graph M can be easily coded. Define

δj(M) =





i if Y⊥Xj|Xi = 1, X−i,−j (partial dependence)
−i if Y⊥Xj|Xi = 0, X−i,−j (partial dependence)
∗ if Y⊥Xj|X−j (no dependence)
0 otherwise (full dependence)

As (A1) holds for a regular CSR model,M will be completely specified by means of the n-
tuple (δ1(M), · · · , δn(M)). E.g., the graph in Example 2.1 is encoded as (∗, 0,−4, 3,−6, 0, 6).

Under (A1), (A2) we can group the predictors into sets to obtain a partition with every
set belonging to one of the following 4 types:

Type 1: Sets containing one predictor, not connected to the response variable;

Type 2: Sets containing one predictor, connected to the response variable with a full con-
nection and that does not control any other predictor;

Type 3: Sets containing two predictors that are paired;

Type 4: Sets containing two or more predictors: a (unique) controlling predictor and all the
predictors it controls.

We call Ci the set of all sets of type i and denote with ci the number of sets in Ci.

Example 2.2 In Example 2.1, C1 = {{X1}}, C2 = {{X2}}, C3 = {{X3, X4}} and C4 =
{{X5, X6, X7}}. Of course, in general several sets of the same type can be present as is
the case in Figure 7.
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Consider now the reverse problem: given a graph with full and dashed connections, and
arrows as described above, do the depicted independencies in the graph, define a CSR
model with no other regularities of the form (5) and (6) ?

Contrary to Graphical Models, this will not always be the case. To this end, consider
the graph in Figure 2:

1
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Figure 2

It reflects that:

Y⊥X2|X1 (8)

Y⊥X1|X2 = 0 (9)

As,

C(Y |X1 = 0, X2 = 1)
(8)
= C(Y |X1 = 0, X2 = 0)

(9)
= C(Y |X1 = 1, X2 = 0)

(8)
= C(Y |X1 = 1, X2 = 1)

we obtain that Y⊥X1|X2 = 1. This contradicts the dashed connection and the arrow
of Figure 2. We call such a graph not consistent as the underlying models satisfy more
independencies of the form (5) and (6) than the depicted ones. This and related aspects
will be discussed in the next two subsections: first for the case of a two-way model, and
afterwards for the general case.

2.2 The Two-Way Case

In this section we suppose that C(Y |X) is of the form (4). Hence,

Y⊥Xi|X−i iff αi = αi,j = 0, ∀j 6= i (10)

Y⊥Xi|Xj = xj, X−i,−j iff αi + xjαi,j = 0, αi,k = 0, ∀k 6= i, j. (11)

As always, we suppose that all two-way interactions are in the model unless explicitly
excluded. Under (4), it is easy to derive that:

Y⊥Xi|Xk = xk, X−i,−k & Y⊥Xi|Xl = xl, X−i,−l & k 6= l ⇒ Y⊥Xi|X−i (12)

Y⊥Xi|Xk = xk, X−i,−k & Y⊥Xk|Xl = xl, X−k,−l & i 6= l ⇒ Y⊥Xi|X−i (13)

We observe that (12) is equivalent to condition (A1) and (13) to (A2) in Definition 2.1.
A complete characterization is provided by the following property whose proof is included
in Appendix 1.

Property 2.1 A graph represents a consistent two-way CSR model iff conditions (A1)
and (A2) are satisfied, i.e., if it is a regular graph.
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A nice feature of these models is that each two-way CSR model - eventually after a
suitable transformation of the predictors - is equivalent to a particular regression model
without restrictions (like e.g. (11)) between the parameters. Therefore, classical regression
estimation procedures can be used. To this end, rewrite (2) (i.e., (1) under Y⊥X1|X2 = 1)
as:

C(Y |X2 = x2, Z = z) = α + α2x2 + αzz with z = x1(1− x2). (14)

In the same way Y⊥X1|X2 = 0 leads to

C(Y |X2 = x2, Z = z) = α + α2x2 + αzz with z = x1x2. (15)

In general, each two-way CSR model can be transformed into a model of the form:

C(Y |XA = xA, ZB = ZB) = α +
∑

i∈A
αixi +

∑

(i,j)∈B
αi,jzi,j, (16)

with αi, αi,j free parameters. In Appendix 2, we describe an algorithm to calculate the
zi,j’s and the sets A and B .

2.3 General Case

In analogy to Graphical Models, we discuss in this section the specification of C(Y |X) of
arbitrary form (3) by means of independencies of the form (5) and (6). We refer to them
as general CSR models.

If we abbreviate αi,i1,···,ik by xi,A with A = {i1, · · · , ik}, after some algebra, one can
show that the equivalent to (11) for a general CSR model is:

Y⊥Xi|Xj = xj, X−i,−j iff αi,A + xjαi,j,A = 0, ∀A ⊂ {1, · · · , n}\{i, j}. (17)

Contrary to the two-way case, a same parameter αi,j,A can appear in several equations
so that simultaneously a systems of equations of the form (17) should be solved to obtain
an explicit parameterization.

Similar to the previous section, we can ask whether all graphs represent a consistent
model. To this end, consider {(x1, · · · , xn)} as the corners of a n-dimensional hypercube.
For a given independency Y⊥Xi|X−i = x−i, denote by E(Y⊥Xi|X−i = x−i) the edge
defined by the corners (x1, · · · , xi−1, 0, xi+1, · · · , xn) and (x1, · · · , xi−1, 1, xi+1, · · · , xn). See
Figure 3 for the case n = 3.PSfrag replacements

(0,0,0) (1,0,0)

(0,1,0) (1,1,0)

(0,0,1) (1,0,1)

(0,1,1) (1,1,1)

E(Y⊥X2|X1 = 1, X3 = 1)

E(Y⊥X1|X2 = 1, X3 = 0)

E(Y⊥X3|X1 = 1, X2 = 1)

Figure 3
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For a given set of independencies S, {Y⊥Xi|Xj = xj, X−i,−j = x−i,−j}, we define a trail
as a sequence of edges E(s), s ∈ S, such that subsequent edges always have a corner in
common. E.g., Y⊥X1|X2 = 1, X3 = 0, Y⊥X3|X1 = 1, X2 = 1, Y⊥X2|X1 = 1, X3 = 1
define a trail as shown in bold lines in Figure 3.

If we associate C(Y |X = x) to each corner x = (x1, · · · , xn), it is easy to see that along
a trail C(Y |X) does not change. This leads to the following geometrical characterization:

Lemma 2.1 A new independency is implied by a given set of independencies S iff the
edge corresponding to the new independency is the starting and end point of a trail in S,
i.e. they form together a loop.

Example 2.3 In Figure 2, S = {Y⊥X2|X1 = 0 , Y⊥X2|X1 = 1 , Y⊥X1|X2 = 0} implies
Y⊥X1|X2 = 1 because as shown in Figure 4 there is a trail that starts in (0, 1) and ends
in (1, 1) and passes through E(Y⊥X2|X1 = 0), E(Y⊥X1|X2 = 0) and E(Y⊥X2|X1 = 1).
This means that the graph does not define a consistent model.

PSfrag replacements

(0,1) (1,1)

(0,0) (1,0)

Y⊥X2|X1 = 0
Y⊥X2|X1 = 1
Y⊥X1|X2 = 0

Figure 4

The above gives immediately an algorithm to verify whether a graph is valid or not. In
general, it will not always be possible to see this at a first glance. To this end we show
that (A2), which is easy to verify visually in the graph, defines a sufficient condition.

Property 2.2 If a graph satisfies conditions (A2) then it defines a consistent general
CSR model.

Proof:
In the following we denote by x−j, x2

−j, x
3
−j, · · · different values of the vector X−j.

Suppose that
Y⊥Xj|X−j = x−j (18)

is implied by, but not included in the given set S. By Lemma 2.1, this means that there
should exist a trail that starts and ends on the edge E(Y⊥Xj|X−j = x−j). As this forms
a loop, there should exist independencies in S that include:

Y⊥Xj|X−j = x2
−j. (19)

As x2
−j and x−j differ in at least one position, there exists an index i, i 6= j so that xi 6= x2

i .
Hence under S,

Y 6⊥ Xj|Xi = xi, X−i−j = x−i−j Y⊥Xj|Xi = 1− xi, X−i−j = x2
−i−j. (20)

Again, as the trail forms a loop and the only way to change through the trail a value of
a variable in the conditional part is by specifying an independency between that predictor
and the response, for some x3

−i,−j , x
4
−i,−j the edges E(Y⊥Xi|Xj = 1, X−i,−j = x3

−i,−j) and
E(Y⊥Xi|Xj = 0, X−i,−j = x4

−i,−j) should be part of the trail. This is shown in Figure 5
where the dotted lines refer to omitted parts of the trail.
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Hence,
Y⊥Xi|Xj = 1, X−i,−j = x3

−i,−j Y⊥Xi|Xj = 0, X−i,−j = x4
−i,−j . (21)

Given the fact that all independencies are of the form (5) or (6), (20) means that Xi is
a controlling predictor for Xj; (21) implies that Xj is not a controlling predictor for Xi

and that there is no full connection between Y and Xi. Hence (A2) is not satisfied.

•

3 Example

In this section we illustrate CSR models for the two-way case by means of the Women and
Mathematics dataset as analyzed extensively in Fowlkes et al. (1988) (henceforward ab-
breviated as FFL). It concerns a study among 1190 New Jersey high school students about
their attitude towards mathematics and the impact of a series of lectures to encourage
interest in that area on it. The data are shown in Table 1.

As in FFL, the emphasis will be on methodological issues, without attempting to present
a thorough analysis. The main point is to show how context sensitive regression models
provide additional information about regularities in the underlying data, complementary
to what a classical approach as followed in FFL provides.

To facilitate comparisons, we mimic the steps in the analysis of FFL; we also suppose
that it is sufficient to look at two-way interaction models of the form (4) for this particular
data set as they argue. The way the data were collected and the questions of interest,
suggest (as FFL do) the use of an underlying logistic regression model, i.e. C(Y |X) =
logit(P (Y = 1|X)).
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X3 = 0 X3 = 1
X2 = 0 X2 = 1 X2 = 0 X2 = 1

X1 = 0 X1 = 1 X1 = 0 X1 = 1 X1 = 0 X1 = 1 X1 = 0 X1 = 1
X5 = 0, X4 = 0

Y = 0 37 27 51 48 51 55 109 86
Y = 1 16 11 10 19 24 28 21 25

X5 = 0, X4 = 1
Y = 0 16 15 7 6 32 34 30 31
Y = 1 12 24 13 7 55 39 26 19

X5 = 1, X4 = 0
Y = 0 10 8 12 15 2 1 9 5
Y = 1 9 4 8 9 8 9 4 5

X5 = 1, X4 = 1
Y = 0 7 10 7 3 5 2 1 3
Y = 1 8 4 6 4 10 9 3 6

The variables are: Y whether the student agrees that they will need mathematics in the future

(0=agree, 1=disagree); X1 whether the student attended the lectures (0= yes, 1=no), X2

his/her sex (0=female, 1=male), X3 his/her type of school (0=suburban, 1=urban), X4

his/her course preferences (0=mathematics, 1=liberal arts), X5 his/her future plans

(0=college, 1=job).

Table 1: The Women and Mathematics Dataset.

In Fig. 6 the black circles represent all possible two-way interaction models according to
complexity (residual degrees of freedom) on the x-axis and goodness-of-fit (G2 likelihood-
ratio statistic) on the y-axis. We marked explicitly those models identified by FFL as of
particular interest, by writing on the left hand side of the corresponding circle, the terms
involved in the corresponding two-way interaction model. As only hierarchical models
are considered, lower order terms that appear in higher order terms are not mentioned
explicitly: e.g., “2,34” means that x2, x3, x4, x3x4 are present in the model. The full and
(slightly curved) dashed line indicate for each d.f. the mean of G2 and the 95%-quantile
of the distribution of G2.

The unfilled circles represent the counterpart of the above for all two-way CSR mod-
els, with a small shift on the horizontal axes to improve the visualization. Observe that
we identify these models by the notation defined in Section 2.1. As there is very strong
evidence that x1 has no effect on the response, we limited ourselves to models without
x1 terms. We identified explicitly the most parsimonious models with residual degrees
of freedom between 26 and 29, and showed the corresponding graphs in Fig. 7. One
observes clearly some recurrent regularities, several of them are not obvious in the clas-
sical approach. E.g., evidence in favor of Y⊥X4|X5 = 1 can be read off immediately of
the graphs, opposed to the approach in FFL where for a given model, the oddsratio is
calculated afterwards to obtain that information (cfr. figure 6 of FFL).
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Figure 6

Following FFL, we look next at the residuals. As an illustration, Fig. 8 shows the
qq plot of the residuals of the models M7 and M8 , and -as a reference- the qq plots
of the two promising models identified by FFL. All models seem to produce roughly
normal residuals. Finally, we look at the (estimates of) the parameters of the models
corresponding to M7 and M8 to verify whether further simplifications might be made
(of course they will be no longer of the form (5) or (6)). Using (16) one gets (the s.e. is
given between parentheses):

M7 : 1.01(0.13)−0.28(0.16)x3−0.69(0.22)x5+0.76(0.16)z2,3−1.05(0.33)z3,5−1.16(0.14)z4,5,

with z2,3 = x2x3, z3,5 = x3x5 and z4,5 = x4(1 − x5). As there is light evidence that the
coefficient of x3 is non significant different from 0, one might consider removing this term
leading to a model with 27 d.f. and G2 = 25.401.
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In a similar way:

M8 : 0.81(0.12)+0.52(0.14)x2−0.71(0.26)x5−0.06(0.32)z2,5−0.96(0.30)z3,5−1.13(0.14)z4,5,

with z2,5 = x2x5, z3,5 = x3x5 and z4,5 = x4(1−x5). The coefficient of z2,5 is not significantly
different from 0, hence one might consider removing this term leading to a model with 27
d.f. and G2 = 28.78. Observe that this is a submodel of “2,35,45” that was identified by
FFL as “promising”.
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The qq-plots of (a) model 2,35,45 of FFL, (b) model 23,35,45 of FFL, (c) CSR model
M8 = (∗, 0,−5, 5, 0) and (d) CSR model M7 = (∗,−3, 0, 5, 0).

Figure 8

4 A Bayesian Approach

In this section we use Bayesian methods to assign prior probabilities to graphs repre-
senting CSR models, and calculate the resultant posterior distributions. One of the main
motivations for this approach is the ability to make uncertainty statements about features
of graphs, rather than only about full graphs. For example, when looking at some of the
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most promising CSR models for the Women in Mathematics data in Figure 7, one of the
first things we try to do is to look for common features across the graphs. Are some pre-
dictors usually unconnected to the response? Do certain predictors always control others?
Is X5 a controlling predictor? Of course, some of these questions can be answered via
a hypothesis test for the linear model that corresponds to the CSR. But others, such as
the last question (is X5 a controlling predictor) cut across many different CSR models,
making traditional frequentist hypothesis testing impossible.

With this motivation, we outline some general issues in the specification of a prior on
CSR models, before describing a specific prior and reporting on the Bayesian analysis of
a quality-improvement dataset.

A prior distribution for CSR models must be specified for the graph, M, and on the
parameters Θ of the linear model associated with the graph. Since the dimensionality of
Θ depends on M, the usual factorization of the prior

Π(M,Θ) = Π(M)Π(Θ|M)

seems especially relevant. In this section, the focus will be on prior Π(M), since most
of the inferential statements of interest will be in terms of the graph, rather than the
associated parameters Θ. The prior distribution Π(M) also must be tailored to the
introduced class of models.

4.1 Graph Priors

Before outlining our prior of choice, we discuss three general strategies for prior con-
struction: a graph-generating process, uniform distributions within equivalence classes of
models and maximum entropy distributions that match desired marginal characteristics
of the prior distribution.

In the context of Graphical Models, a popular approach for prior specification is by
means of a set of independent Bernoulli variables each one indicating the presence or
absence of a particular edge in the graph (Madigan et al. (1994)). As not every graph
is a regular CSR graph and various types of edges are possible, the above idea has to be
adapted. One way is by means of a graph-generating process: instead of independently
deciding whether an edge is present, a sequential approach is followed where one steps
through the X1, · · · , Xn predictors and in each step one takes a decision about the graph
at Xi, given the previous decisions.
So for example in Figure 1, one might first consider X1: there would be a probability
of a connection (in this case X1 is unconnected). If there had been a connection, there
would be a probability on what type (full or partial). If the connection were partial, we
know that there would be exactly one controlling predictor. A prior distribution for this
controlling predictor would be necessary. Lastly a prior distribution is needed on the
level of the controlling predictor (0 or 1) which modifies the effect of X1. In some ways,
this approach of defining a process for constructing the graph is similar to the approach
taken by Chipman et al. (1999) for putting a prior on trees. In the case of CSR models,
however, the situation is more complicated: not only a natural ordering is missing, also
implications of draws already made on the possible outcomes of a draw for characteristics
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of the next variable is not always very straightforward. For example, if X1, . . . , X5 had all
been drawn in Figure 1, then X6 must have some sort of connection with Y since it has
been determined to be a controlling variable for X5. Such interrelationships complicate
both the specification of a prior, and in particular the computation of a prior probability
for a specified graph.

A second approach would be to specify a prior distribution on some characteristics
of the graph, and assume a uniform prior across all graphs with the same value of this
characteristic. For example, one might specify a prior distribution on c1, the number
of connections that are absent between the X’s and Y . This prior probability would be
divided among allM with the same value of c1 (i.e., we consider all models as members of
an equivalence class). In order to calculate the probability associated with any particular
model Mi, it will be necessary to determine the number of elements in each equivalence
class. Combinatorial arguments can be used to show that Nn(c1, c2, c3, c4), the number of
regular graphs with n predictors and with ci sets of type i, is given by:

Nn(c1, c2, c3, c4) = c4!2n−c1−c2−c3−c4
(

n
c1, c2, c3, c4

){
n− c1 − c2 − 2c3 − c4

c4

}
(22)

where {·} denotes the Stirling number of the second kind (Riordan (1979)), c1 is the
number of unconnected nodes, c2 is the number of fully connected nodes that do not
control another predictor, c3 is the number of pairs of nodes controlling each other, and
c4 is the number of nodes that have a full connection and control one or more other
nodes. By summing out all elements of (22) over c2, c3, c4, the size of an equivalence class
determined by a particular c1 value can be calculated.

A third approach to the specification of Π(M) is to only specify some aspects of the
prior in terms of specific characteristics of the graph, and then try to identify the max-
imum entropy prior that most closely matches these conditions (Jaynes (2003)). The
computational task of finding a maximum entropy prior is difficult, and so this strategy
is not pursued further.

Finally, observe that CSR models are sufficiently complicated objects that it may be
difficult to definitively say, at the level of individual models, that one prior distribution
better captures expert belief than another. We wish to stress that such priors may best be
understood in terms of the prior distributions implied on various marginal characteristics
of M, rather than probabilities on individual M. Thus, in the analysis presented below,
we emphasize such marginal prior probabilities and the corresponding marginal posterior
probabilities.

There is another reason for our reluctance to focus on prior and posterior probabilities
at the level of individual M. The problem of dilution (George (1999), Chipman et al.
(2002)) may mean that although sensible priors can be specified for components of the
model, some models may receive higher or lower mass depending on the number of similar
models. With CSR models, for example, there will be more variations on a model with
many paired controllers, since each controller could exert control at a 0 or 1 level. This
complication suggests that the most important thing is that a prior make sense when
collapsed onto marginal priors for quantities such as c1, or probabilities that variables are
controlled or are controllers, etc.
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4.2 Example

We illustrate the Bayesian approach to CSR models with the leafspring dataset (Pig-
natiello et al. (1985)). The data are from an experiment on the manufacture of leaf
springs for trucks. The response (Y ) is the free height of the spring. Five binary pre-
dictors studied in the experiment: X1 = High heat temperature (1840/1880◦ F), X2 =
Heating time (23/25 seconds), X3 = Hold down time (2/3 seconds), X4 = Quench oil
temperature (130-150 / 150-170 ◦ F), and X5 = Transfer time (10/12 seconds). 48 ob-
servations were recorded, in the form of three replicates at each level of a 16-run (25−1)
fractional factorial experiment. The original dataset was aggregated over the non-critical
predictor X5 = Transfer Time, after preliminary analysis suggested that this factor did
not influence the response. A full least squares model gave (the s.e. is given between
parenthesis):

C(Y |X) = −0.15(0.06) + 0.15(0.07)x1 + 0.3(0.07)x2 + 0.09(0.07)x3 − 0.2(0.07)x4+

0.034(0.07)x1x2−0.07(0.07)x1x3+0.17(0.07)x1x4+0.04(0.07)x2x3−0.33(0.07)x2x4+0.05(0.07)x3x4.

As discussed above, the equivalence class approach is used to specify M prior prob-
abilities, in terms of c1 the number of nodes with no connection to Y . Prior mass is
equally redistributed within each equivalence class defined by a c1 value. A natural choice
for the distribution on c1 is a Binomial distribution where the parameter p indicates
the probability that a connection is absent. For p = 0.4, 0.5, and 0.6, the prior on
c5 = 1− c1 = #{ fully connected nodes in graph} is given in Table 2. We see that, intu-
itively, as the chance of no connection increases, more probability is put on small values of
c5. That is, fewer fully connected nodes are likely apriori. Multiple modes in the prior on
c5 are the result of constraints on the types of models that can possess exactly one connec-
tion. Other marginal priors will be mentioned below, after some posterior probabilities
are given.

p P (C5 = 0) P (C5 = 1) P (C5 = 2) P (C5 = 3) P (C5 = 4)
0.4 0.0256 0.1536 0.3456 0.3456 0.1296
0.5 0.0625 0.25 0.375 0.25 0.0625
0.6 0.1296 0.3456 0.3456 0.1536 0.0256

Table 2: Prior probabilities on C5 for different values of p.

To facilitate comparisons, we follow an approach similar to George et al. (1993) to
define the remaining distributions:

Y |βM, σ2,M ∼ N (XβM, σ
2I) (23)

βM|σ2,M ∼ N (β̄M, ασ
2I) (24)

σ2|M ∼ IG(κ/2, κλ/2) (25)

The prior on β is a mixture of a normal distribution and a point mass at 0, with the former
corresponding to a significant coefficient, and the latter corresponding to an insignificant
one. We made the neutral choice of β̄M = 0. The prior on σ2 is equivalent to κλ/σ2 ∼ χ2

κ.
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In addition to the specification of Π(M), prior hyperparameters κ, α, λ must be specified.
We take κ = 5, representing a prior equivalent to a sample with five residual degrees of
freedom. By choosing λ = 0.2, we ensure that the mle σ̂2 = 0.013 under the full model is
near the centre of the σ prior, and the upper tail is close to the sample standard deviation
of Y . We choose α sufficiently large that the prior for significant effects is more dispersed
than the empirical distribution of estimated effects. This leads to a choice of α = 4.0.

model posterior probability
(0, 4, *, 0) 0.41
(0, 4, 1, 0) 0.20
(0, 4, -4, 0) 0.15
(-4, 4, *, 0) 0.07
(0, 4, 0, 0) 0.04

Table 3: Models with the highest posterior probability for the leafspring dataset.

The problem is sufficiently small to explore the model space by complete enumeration.
Table 3 gives some of the most probable models according to the posterior. It is presented
primarily to motivate the use of marginal priors. This table suggests that X2 is likely to be
controlled by X4. The posterior probability that X4 is a controlling variable of any other
variable is 0.96, compared to a prior probability of 0.24. The posterior probabilities that
X4 controls each of (X1, X2, X3) are (0.11, 0.94, 0.20) respectively. These probabilities are
not mutually exclusive, since in some modelsX4 controls more than one ofX1, X2, X3. The
corresponding prior probability is 0.09. Thus the data strongly support the hypothesis
that X4 controls X2.

Observe that the fact that X4 is very likely to control X2 is also reflected by the almost
horizontal line in the X2 −X4 interaction plot as shown in Figure 9.

PSfrag replacements

X4 = 0

X4 = 1

X2

Figure 9

15



Discussion

In this paper, we described a framework to build regression models with binary predictors
by means of easily interpretable (higher order) regularities. Such regularities can be
overlooked if one starts with a (generalized) linear model parameterization. We showed
how a useful subclass can be constructed for which the consistency and estimation problem
can be solved in an efficient way.

Similar to Graphical Models, the proposed approach constitutes a complement to linear
models by providing a compact and intuitive clear representation of the global interac-
tion structure between predictors and response variable. From this point of view, several
challenging questions come up. First of all about how to make the graphs more informa-
tive. For example, the thickness or color of the edges might provide additional degrees
of freedom to encode the (kind of) support for a particular hypothesis. Secondly, about
how to extend the models to incorporate information on the conditional distribution of
the predictors as was done by block or chain models for the case of Graphical Models.
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Appendix 1: Proof of Property 2.1

Proof:
Because of (12) and (13), conditions (A1) and (A2) should be necesarry. To show that
they are also sufficient, we show that no independencies of the form (5) nor (6) can be
implied by the independencies depicted in a graph satisfying (A1) and (A2),

First, suppose
Y⊥Xi|X−i (26)

is not depicted in the graph but implied by the independencies depicted in the graph.
Because of (10), in order that (26) holds, the independencies depicted in the graph

should put constraints on the values of αi and αi,·. The only independencies which do
have this effect on αi, are of the form Y⊥Xi|Xj = xj, X−i,−j; at least one of them should
hold. Suppose (without any loss of generality),

Y⊥Xi|Xj = 1, X−i,−j . (27)

At the same time, the independencies depicted in the graph, should imply that αi,j = 0.
The only independencies that will constrain αi,j are:

Y⊥Xi|Xk = xk, X−i,−k (28)

or
Y⊥Xj|Xl = xl, X−j,−l. (29)
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The depicted independencies will satisfy (12); this means that (27) and (28) can only hold
if k = j; in this case either xk = 1, putting no additional constraint on αi,j, or xk = 0,
contradicting that (26) itself was not present in the graph.
In the same way, (27) and (29) can only hold if i = l, i.e., if i and j are paired predictors.
It is easy to show that this does not imply that αi,j = 0.

The impossibility of an implied independency of the form (6) can be proven in the same
way as (26).

•

Appendix 2: Transformation Algorithm

The following algorithm converts any CSR two-way model into a (classical) model of the
form (16).

1. Define A = {1, · · · , n}, B = {(i, j), i < j} and zi,j = xixj, for all i, j : i < j.

2. For each set S of the partition corresponding to the given model, and

not of type 2:

2.1 if S is of type 1, hence S = {Xi},
set A = A \ {i} and B = B \ {(i, j),∀j 6= i}.

2.2 if S is of type 3, hence S = {Xi, Xk},
• if δi(M) = k or δk(M) = i, define:

zi,k = I(δi(M) = k)xi + I(δk(M) = i)xk − xixk (30)

• define A = A \ {i, k} and B = B \ ({(i, j),∀j 6= i, k} ∪ {(k, j), j 6= i, k}).
2.3 if S is of type 4, hence S = {Xi1, · · · , Xir , Xk} with Xk the controlling

predictor, for all il:
• if δil(M) = k, define

zil,k = xil − xilxk (31)

• define A = A \ {il} and B = B \ {(il, j),∀j 6= il, k}.
It was this algorithm that was used in Example 2.1. As a motivation for the algorithm,

consider e.g. step 2.2. Since the effect of each predictor on the response is governed by the
other predictor, neither predictor can have a main effect and both main effects involving
xi and xk are removed. Also, all interactions involving each of the two predictors are
removed, with the exception of the xixk interaction. This is because if each predictor
controls the other, then no other predictor can control either xi or xk. Thus all other
interactions with these predictors are removed as well.

To illustrate the application of the algorithm, Table 4 shows the application of the
algorithm to Example 2.1. The final model is then

C(Y |X) = α + α2 + α6 + α2,6x2x6 + α3,4(1− x3)x4 + α5,6x5x6 + α6,7(1− x6)x7 (32)

and coincides with (7).
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Step S type A B
1 – – {1, . . . , 7} {(1, 2), . . . , (6, 7)}

2.1 {X1} 1 {2, . . . , 7} {(2, 3), . . . , (6, 7)}
2.2 {X3, X4} 3 {2, 5, 6, 7} {(2, 5), (2, 6), (2, 7), (3, 4), (5, 6), (5, 7), (6, 7)}

z3,4 = 1x4 + 0x3 − x3x4 = x4(1− x3)
2.3 {X5, X7, X6} 4 {2, 6} {(2, 6), (3, 4), (5, 6), (6, 7)}

z6,7 = 1x7 − x7x6 = x7(1− x6)

Table 4: Application of the two-way algorithm to example 2.1. New variables created by
each step are listed in separate rows underneath the corresponding steps.
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