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1 Introduction

Recursive partition (RP) models are a flexible method for specifying the conditional distribution
of a variable y, given a vector of predictor values x. Such models use a tree structure to recur-
sively partition the predictor space into subsets where the distribution of y is successively more
homogeneous. The terminal nodes of the tree correspond to the distinct regions of the partition,
and the partition is determined by splitting rules associated with each of the internal nodes. By
moving from the root node through to the terminal node of the tree, each observation is then
assigned to a unique terminal node where the conditional distribution of y is determined. The
two most common response types are continuous and categorical, with corresponding tasks often
known as regression and classification.

Given a data set, a common strategy for finding a good tree is to use a greedy algorithm to
grow a tree and then to prune it back to avoid overfitting. Such greedy algorithms typically grow
a tree by sequentially choosing splitting rules for nodes on the basis of maximizing some fitting
criterion. This generates a sequence of trees each of which is an extension of the previous tree. A
single tree is then selected by pruning the largest tree according to a model choice criterion such
as cost-complexity pruning, cross-validation, or hypothesis tests of whether two adjoining nodes
should be collapsed into a single node.

Early work in RP models includes Morgan and Sonquist (1963), who developed a recursive
partitioning strategy (AID - Automatic Interaction Detection) for a continuous response. There
were many offshoots of this work, including Kass (1980) and Hawkins and Kass (1982). Recursive
partitioning models were popularized in the statistical community by the book “Classification
and Regression Trees” by Breiman, Friedman, Olshen and Stone (1984). RP models have also
been developed in the machine learning community, with work by Quinlan on the ID3 (1986 and
references therein) and C4.5 (1993) algorithms being among the most widely recognized.

2 Structure of a RP model

A RP model describes the conditional distribution of y given a vector of predictors x = (x1, x2, . . . , xp).
This model has two main components: a tree T with b terminal nodes, and a parameter Θ =
(θ1, θ2, . . . , θb) which associates the (possibly vector-valued) parameter θj with the jth terminal
node. If x lies in the region corresponding to the jth terminal node then y | x has distribution
f(y | θj), where we use f to represent a parametric family indexed by θj. The model is called
a regression tree or a classification tree according to whether the response y is quantitative or
qualitative, respectively. An example of a RP model with binary splits is displayed in Figure 1,
and data sampled from its induced partition is displayed in Figure 2.
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Figure 1: A regression tree where y ∼ N(θ, 22) and x = (x1, x2).

2



X1

Y

0 2 4 6 8 10

0
5

10

X2={A,B}

•

•
•

•

•

•

• •

•

•

•

•

•

•

• •
•

•

•

•
•

•

•

•

•

•
•

•

•

•
•

•
•

•

•

•

•

•

•

•

••

•

••

•
•

•

••

•

•

•

•
•

•
•

•

••

•

•

••

•

•

•

•

•

•

•

• •

•

•

•

•

•
•

•

•

••

•

•

•

•

•

•

•

••

•

•

•

•

•

•• •

•

•

•
•

•

•

•

•

••

•

•

•

•

••
•

•
•

•

•

•

•

•

•
•

•

•

•

•

•

•

•
•

••

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•
•

•
•

•

•

•

•

••

•
•

•

•

•

•

•

• •
•

••

•

•

•

•
•

•

•

•

•

•

•

•

•
•

•

•

•
•

•

•

•

•
•

•

• •

•

•

•

•

•

•

•

•
•

•

•

•

•

• •
•

•

•

• •
•

•• •

•

•

•

•

•

•

•

•

• •

•

•

•
•

•

• •

•
•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

••

••
• •
•

•

•

•

•

• •

•

•

•

•

• •

•
•

•

•

•
•

•
•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

• •

•

•
•

•

•
•
•

•

•

•

•

•

•

•
•

•

•

•

•

•
•

•

•

•

•

•

•
•

•

•

•

•

•

•
•

•

•

•

•

•• ••
•

•

•

•
•

•
•

•

•

•

•

•
•

• •

•

•

•

•

•

•

•

• •

•

•

•

•

•

• •
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•
•

•

•

•

•
••

•

X1

Y

0 2 4 6 8 10

0
5

10

X2={C,D}

•

••

•

•
•

•

•

• •

•

••

•

•

•

•

•

•

•

• •

•

•

•

••

•

•

••

•

•

•

•

•

•

•
•

••
•

•

•

•

•

•

•

•

•

•
•• •

•

•
•

•
•

• •

•

•

•

•

•

•
•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
• •

•

•

•

•

•

•

•

• •

•
••

•

••

•

•

•

•

•

•
• •

•

•

•

•

•
•

•

••

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•
•

••

•

••

•

•

•

•
•

•

•

•

•
•

•

•
•

•

•
•

•

•

•
•

•

•

•

•

•

•

•

•

•

•
•

•

•

••

•

•

•
•

•

•

•

••
•

•

•
•

•
•

•

•

•

•

•

•
•

•

•

•

•
••

•

•
•

•

•
• •

•
•

•

•
•

•

•
•

•

•

•

•

• •

•
•

•

•
•

•

••
•

•

•

•

• •

•

•

•

•

•

•

•
•

•

•

••

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•
•

•

•

•
•

•

•
•

•

•

•

•

•

• •

•

•

•

•

•• •

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

• •
•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•
•

•

•

•

•

•
•

•

•

••

•

••

•

•

•
•

•
•

•
•

•

•
•

••

•

•

•

•
•

•

•

•
•

•

•

•
•

Figure 2: A realization of 800 observations sampled from the tree model depicted in Figure 1.
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Before describing the example tree, we discuss the general structure of a RP model for the
case of a binary tree. A binary tree T subdivides the predictor space as follows: Each internal
node has an associated splitting rule which uses a predictor to assign observations to either its left
or right child node. The terminal nodes thus identify a partition of the predictor space according
to the subdivision defined by the splitting rules. For quantitative predictors, the splitting rule is
based on a split value s, and assigns observations for which {xi ≤ s} or {xi > s} to the left or
right child node respectively. For qualitative predictors, the splitting rule is based on a category
subset C, and assigns observations for which {xi ∈ C} or {xi /∈ C} to the left or right child node
respectively.

Several assumptions have been made to simplify exposition. First, splitting rules are assumed
to subdivide a region into two sub-regions, giving a binary tree. Second, only one predictor
variable is assumed to be used for each splitting rule. Both these restrictions can be relaxed.

For illustration, Figure 1 depicts a regression tree model where y ∼ N(θ, 22) and x = (x1, x2).
x1 is a quantitative predictor taking values in [0,10], and x2 is a qualitative predictor with cate-
gories (A,B,C,D). The binary tree has 9 nodes of which b = 5 are terminal nodes. The terminal
nodes subdivide the x space into 5 nonoverlapping regions. The splitting variable and rule are
displayed at each internal node. For example, the leftmost terminal node corresponds to x1 ≤ 3.0
and x2 ∈ {C,D}. The θi value which identifies the mean of y given x is displayed at each terminal
node. Note that θi decreases in x1 when x2 ∈ {A,B}, but increases in x1 when x2 ∈ {C,D}. A
realization of 800 observations sampled from this model is displayed in Figure 2.

If y were a qualitative variable, a classification tree model would be obtained by using an
appropriate categorical distribution at each terminal node. For example, if y was binary with
categories C1 or C2, one might consider the Bernoulli model P (y ∈ C1) = θ = 1 − P (y ∈ C2)
with a possibly different value of θ at each terminal node. A standard classification rule for this
model would then classify y into the category yielding the smallest expected misclassification cost.
When all misclassification costs are equal, this would be the category with largest probability.

3 Learning the RP model

To learn or estimate a RP model, we assume that a training sample consisting of tuples (xi, yi), i =
1, . . . , n is available. Both the tree T and the terminal node parameters Θ must be estimated
using the training data.

For a fixed T , a common assumption is that the response values are i.i.d. within each terminal
node. The data in each terminal node can be considered a separate sample, and conventional
estimation techniques (e.g. maximum likelihood) yield familiar node parameter estimates θ̂j such
as the sample mean for a continuous normal response and sample proportions for a categorical
multinomial response.

Armed with a recipe for estimating Θ given T , we can now consider estimation of T . First, an
objective function must be specified, providing a mechanism to assess the quality of a particular
tree T . The log-likelihood of the training data is one such criterion. For a normal response
model, the corresponding criterion would be the minimization of a residual sum of squares. For a
multinomial response, the multinomial log-likelihood would be used. Ciampi (1991) was one of the
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first to develop a likelihood-based approach to RP models. Other criteria have been proposed for
specific response classes, such as the Gini index (Breiman et. al. 1984) for a categorical response.

With an objective function quantifying the quality of a tree, the estimation problem becomes
a search over all possible trees to optimize the objective. Although splitting rules for continuous
x are real-valued, the objective function will only change when training points are moved among
terminal nodes of the tree. Thus it is common to consider only splitting rules defined at data
points, and require that each terminal node contain at least one training point. The search over
the set of trees is thus a combinatorial search over a finite but very large discrete space.

The most common search algorithm is a greedy forward search, in which all training obser-
vations are initially grouped into a single node. The algorithm considers splitting into two child
nodes, examining all possible splits on all possible variables. The splitting rule yielding the best
value of the objective function (e.g. the smallest residual sum of squares when summed over the
two child nodes) is selected. The procedure is repeated in each child node recursively until a large
tree is grown.

Several strategies can be employed to decide how large a tree to grow. In the CHAID algorithm
of Kass (1980), hypothesis tests were used to decide when to stop subdividing, yielding a final
tree. Breiman et. al. (1984) suggest growing a maximal tree, and then pruning away sibling
nodes that do not significantly improve the objective function over the value assigned to their
parent node. Their reasoning was that the forward greedy search might sometimes stop early,
missing significant effects. For example, in the tree displayed earlier, no initial split leads to a
large reduction in residual sum of squares because of the interaction pattern. Their backward
pruning was facilitated by the idea of cost-complexity pruning, in which a modified objective
function was minimized:

Loss(T ;α) = RSS(T ) + α|T |, (1)

where |T | represents the number of terminal nodes of the tree. Penalty parameter α ≥ 0 controls
the trade-off between tree size and accuracy. Breiman et. al. showed that (1) can be minimized
as α increases from 0 to ∞ by considering a nested sequence of pruned trees, starting with the
largest tree identified. The optimal α and a corresponding tree are selected so as to minimize a
cross-validated estimate of the objective function.

While other methods for identifying the best tree have been proposed, the greedy forward
search is quick and can be quite effective.

4 Strengths and weaknesses of RP models

The structure of RP models enables them to identify interactions. For instance, in Figures 1
and 2, we see an interaction effect between X1 and X2: If X2 = {A,B} then response y decreases
with increasing X1. If X2 = {C,D} then response y increases with increasing X1. This is perhaps
the greatest strength of RP models, and one of the reasons they are used for exploratory data
analysis.

This strength is also a weakness. If the relation between predictors and response is additive,
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very large trees will be needed to capture this relationship. For instance, if

y = x1 + x2 + x3 + x4 + x5 + error,

then a tree with 32 terminal nodes will be required to even approximate this function with a
single step along each of the five predictor axes.

Trees are popular among practitioners because of their interpretability. It is natural to
interpret the sequence of conditions leading to a terminal node of a tree. Care must be taken with
such interpretations, especially if dependencies exist among predictors. In such cases, multiple
trees with different splits on different variables may fit the data equally well.

In addition to dealing with mixed predictor types, RP models can handle missing values of
predictors via several strategies. For missing predictor values in the training data, one could (i)
treat “missing” as a new category for a categorical predictor, or (ii) identify surrogate splitting
variables that produce splits similar to a missing predictor. If predictor values are missing when
making predictions for new observations, either of these strategies may be employed, or one may
terminate the branching process when a missing value is needed in a branch, and base predictions
on the interior node.

The most common form of RP models utilize a single variable for each splitting rule. This
axis alignment aids in interpretability, but can be a weakness if variation in the response occurs
along a linear combination of predictors, rather than along the axes. The additive function of five
variables mentioned above is an example of this.

By virtue of subdividing the data into smaller subgroups, an RP model can suffer from spar-

sity, especially if more complex statistical models are utilized in the terminal nodes. For instance,
a significant challenge in modifying RP models for survival data with censoring (Leblanc and
Crowley 1993) is the pooled nature of Kaplan-Meier estimates of the survival curve. This data
sparsity is one of the primary reasons for the use of simple models in terminal nodes.

A weakness of RP models is sensitivity of results to small data perturbations. Breiman
(1996) demonstrated that when RP models were fit to bootstrap samples of the data, there could
be substantial variation in tree structure. While this would seem to be a weakness, Breiman
leveraged this idea to produce Ensemble methods discussed below in Section 6.

Because of the greedy nature of the search over the space of trees, inference for the resultant
model is difficult. Although confidence intervals and hypothesis tests can easily be constructed
conditional on a specific tree T , the adaptive nature of the learning algorithm means that the
statistical properties of estimators, intervals and tests will be seriously undermined. Methods that
take account of the search include adjustments for multiple testing (Hawkins and Kass 1982) and
Bayesian approaches (Chipman, George and McCulloch 1998; Denison Mallick and Smith 1998).

5 Extensions

The popularity of RP models has lead to a number of extensions and the development of related
methods.

A variety of search strategies have been proposed as alternatives to the greedy forward stepwise
approach. These include the use of stochastic search optimizers such as genetic algorithms (Fan
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and Gray 2005) and simulated annealing (Sutton 1991; Lutsko and Kuijpers 1994) and MCMC
(Chipman et. al. 1998, Denison et. al. 1998). Tibshirani and Knight (1999) used the bootstrap
to perturb data before executing a greedy search.

Variations on the tree structure have also been considered, including splitting rules based on
linear combinations of real-valued predictors (Loh and Vanichsetakul, 1988). Some RP algorithms
(e.g., AID) allow nodes to have more than two child nodes, complicating the search but sometimes
making interpretation clearer. Quinlan’s C4.5 splits categorical predictors by generating a different
child node for each categorical level of the corresponding predictor.

The statistical model in terminal nodes has also been extended to richer models, such as linear
regression (Alexander and Grimshaw, 1996; Chipman, George and McCulloch, 2002), generalized
linear models (Chipman, George and McCulloch, 2003), and Gaussian process models (Gramacy
and Lee, 2008).

6 Ensembles of trees

RP models have been used as a “base learner” in a number of algorithms that seek to achieve
greater predictive accuracy by combining together multiple instances of a model.

In noticing the sensitivity of trees to small perturbations, Breiman (1996) developed a strategy
known as bootstrap aggregation or “Bagging” for generating multiple trees and combining them
to achieve greater prediction accuracy. For instance, with a continuous response, each bootstrap
tree would be used to generate predictions at a particular test point, and these predictions would
be averaged to form an ensemble prediction.

A further enhancement led to Random Forests (Breiman, 2001). Additional variation in the
search algorithm was introduced by randomizing the choice of predictor in splitting rules. This
led to a richer set of trees, and could further improve predictive accuracy.

Another form of ensemble model using RP models is boosting (Freund and Schapire, 1997). In
this algorithm, a sequence of RP models are learned, each depending on those already identified via
data weights that depend on predictive accuracy of earlier RP models. These weights encourage
the next RP model to better fit those observations that have been incorrectly classified. At the
end of the boosting sequence, an ensemble prediction is generated by a weighted combination of
predictions from each learner in the ensemble.

Although neither boosting or random forests require that the base learner be a RP model,
these have yielded the most popular and successful form of ensemble model.

7 Related work

A model closely related to RP models is the hierarchical mixture of experts model (Jordan and
Jacobs, 1994). In this model, a different logistic function of the predictors is used in each interior
node to probabilistically assign data points to the left and right children. In doing so, the hard
boundaries associated with splitting rules are replaced with soft decisions indexed by continuous
parameters. In terminal nodes, predictions are given by logistic regression. Tree size and topology
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is typically fixed in advance, and the tree learning algorithm becomes a continuous optimization
problem.
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