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Experiments using designs with complex aliasing patterns are often performed-for example, two- 
level nongeometric Plackett-Burman designs, multilevel and mixed-level fractional factorial de- 
signs, two-level fractional factorial designs with hard-to-control factors, and supersaturated designs. 
Hamada and Wu proposed an iterative guided stepwise regression strategy for analyzing the data 
from such designs that allows entertainment of interactions. Their strategy provides a restricted 
search in a rather large model space, however. This article provides an efficient methodology based 
on a Bayesian variable-selection algorithm for searching the model space more thoroughly. We 
show how the use of hierarchical priors provides a flexible and powerful way to focus the search 
on a reasonable class of models. The proposed methodology is demonstrated with four examples, 
three of which come from actual industrial experiments. 

KEY WORDS: Gibbs sampler; Hard-to-control factors; Interactions; Partial aliasing; Plackett- 
Burman designs; Supersaturated designs. 

Nongeometric Plackett-Burman (1946) (PB) designs (i.e., 
those whose run sizes are not a power of two), such as those 
with 12, 20, and 24 runs, are popular for screening a large 
number of two-level factors because of their run-size econ- 
omy. The analysis of these PB designs has traditionally been 
confined to main effects only under the assumption that the 
interactions are negligible. This focus on main effects is 
due to the complex aliasing patterns of these designs. Con- 
sider the 12-run PB design with 11 factors in Table 1, Sec- 
tion 1: For each factor, say X, the main effect is partially 
aliased with the 45 two-factor interactions not involving X. 
Because of such complex aliasing patterns, Daniel (1976, 
p. 294) had reservations about using PB designs even for 
screening and referred to their complex aliasing patterns as 
"hazards." 

Hamada and Wu (1992) went beyond the traditional ap- 
proach by showing that interactions could be identified and 
estimated with reasonable precision from such designs with 
complex aliasing. They proposed an iterative analysis strat- 
egy based on the precepts of effect sparsity (i.e., experi- 
mental variation attributed to only a few effects) and ef- 
fect heredity (i.e., a significant two-factor interaction oc- 
curring with at least one of the corresponding main effects 

being significant) that exploited the designs' complex alias- 
ing patterns. Recognizing the potential for entertaining in- 
teractions, the "hazards" of the nongeometric PB designs 
could now be viewed as "advantages." For example, in geo- 
metric PB designs (i.e., 21k- fractional factorials), a main 
effect is either orthogonal to or completely aliased with an 
interaction so that, if main effect A is completely aliased 
with interaction BC, the geometric PB design would pro- 
vide no information about their separate effects; in contrast, 
for a nongeometric PB design, the two effects are partially 
aliased and can be decoupled under certain assumptions. 

Designs and data with complex aliasing patterns arise in 
several situations: 

1. Two-levelfactors. In addition to the nongeometric 12, 
20, 24, and 28 PB designs (Plackett and Burman 1946), Hall 
(1961) gave four nongeometric 16-run designs. 

2. Multilevel and mixed-level fractional factorials. 3k-p 
fractional factorials are examples of multilevel designs in 
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which complex aliasing arises if each main effect is decom- 
posed into the linear and quadratic contrasts and each two- 
factor interaction into linear x linear, linear x quadratic, 
quadratic x linear, and quadratic x quadratic contrasts. 
L18(2 x 37) and L36(211 x 312) are examples of mixed- 
level designs that accommodate both two-level and three- 
level factors. See Wang and Wu (1991) for many classes of 
mixed-level designs. Wang and Wu (1992) also considered 
"nearly orthogonal" designs whose main effects are either 
orthogonal or nearly orthogonal and that also have complex 
aliasing patterns. 

3. Hard-to-control factors. There may be some difficulty 
in controlling the experimental factors exactly so that the 
experimental design is not carried out as planned. Con- 
sequently, even a 2k-p fractional factorial design will no 
longer be orthogonal when improperly implemented and 
therefore will have complex aliasing patterns. Moreover, a 
mistake may be made in setting the factors levels for a par- 
ticular run, which will have the same adverse effect. 

4. Supersaturated designs. Supersaturated designs allow 
the study of more factors than runs. See recent work by 
Lin (1993) and Wu (1993) that presented designs that have 
complex aliasing. In fact, those given by Wu (1993) use the 
partially aliased interaction columns of the PB designs to 
accommodate the additional factors. 

The analysis strategy of Hamada and Wu (1992) was 
motivated by the potential infeasibility of performing all- 
subsets regression with main effects and all two-factor in- 
teractions; examples of this include (a) more effects than 
runs (or observations), (b) computational infeasibility, say 
with 66 effects for a 12-run PB design, and (c) potential un- 
reasonable models with two-factor interactions and no main 
effects. The Hamada and Wu (1992) analysis strategy used 
an iterative stepwise regression approach that addressed (a) 
and (b) and was guided by the principle of effect heredity, 
which addressed (c). Their strategy did not explicitly im- 
pose effect heredity, so models with two-factor interactions 
without corresponding main effects may still be obtained. 

Although providing a feasible alternative to an all-subsets 
regression, the Hamada and Wu (1992, p. 132) strategy and 
a modified form (p. 136) explored a small part of the en- 
tire model space. More comprehensive searches are needed. 
Complex aliasing and designs with more effects than runs 
mean that the model space is very large and may con- 
tain different models that explain the available data. The 
stepwise strategy tends to identify a single model, how- 
ever. We present a feasible and more comprehensive search 
that addresses (a)-(c). This Bayesian approach combines 
the stochastic search variable selection (SSVS) algorithm 
of George and McCulloch (1993) with priors for related 
predictors given by Chipman (1996). A suitable class of 
hierarchical prior distributions focuses the search on a rea- 
sonable class of models as suggested by (c) (i.e., that obey 
effect heredity). The stochastic nature of the search means 
that all models have positive probability of being visited. In 
practice, when the data suggest multiple models, the pro- 
cedure is able to identify them. The stochastic search is 

"data-guided," so when data suggest that a small subset of 
models are most likely, reasonable estimates of the proba- 
bility of these models are available based on many fewer 
posterior samples than the total number of models. 

The article is organized as follows. In Section 1, four 
examples (three with real data) are given that illustrate the 
situations in which complex aliasing arises. In Section 2, 
a Bayesian variable-selection algorithm that incorporates 
the hierarchical model requirements-that is, Bayesian hi- 
erarchical model selection-is presented. The experiments 
given in Section 1 are analyzed in Section 3 using the 
Bayesian hierarchical model-selection methodology. The 
article concludes with a discussion in Section 4. 

1. EXAMPLES 
In this section, examples of four experiments illustrating 

situations in which complex aliasing arises are given-a 
screening experiment using a PB 12-run design, a mixed- 
level design, an experiment with hard-to-control factors, 
and a supersaturated design. 

1.1 Screening Experiment 
Table 1 presents a 12-run PB design and illustrates its 

use in a screening context that can accommodate up to 
11 factors labeled A-K. The data were originally con- 
structed by Hamada and Wu (1992) based on the true model 
Y = A + 2AB + 2AC + E with e ~ N(O, a = .25); that is, 
factors A, B, and C are active with the remaining factors 
D-K inactive. For an actual experiment that reanalyzed a 
12-run PB design to improve the reliability of weld-repaired 
casts, originally due to Hunter, Hodi, and Eager (1982), see 
Hamada and Wu (1992). 

1.2 Blood-Glucose Experiment Using Mixed-Level 
Design 

Henkin (1986) used an 18-run mixed-level design to study 
the effect of 1 two-level factor and 7 three-level factors 
on blood-glucose readings made by a clinical laboratory 
testing device. Note that all the factors were quantitative. 
Here we consider only one aspect of the study, which was 
to identify factors that affect the mean reading. The design 
and response data are given in Table 2, and the factor names 
and levels are given in Table 3. 

Table 1. Screening Experiment With Plackett-Burman 12-Run 
Design and Response Data 

Design 

A B C D E F G H I J K Response 

+ + - + + + + - 1.058 
+ - + + + - + - + 1.004 
- + + + - - - + - + + -5.200 
+ + + - - + - + + - 5.320 
+ + - + - + + - + 1.022 
+ - + - + + - + + -2.471 

- - - + - + + - + + + 2.809 
- - + - + + - + + + - -1.272 
- + - + + - + + + - - -.955 
+ + + + + + - - - .644 
- + + - + + + - - - + -5.025 

.....- -...-...- ~- - - - - -- 3.060 
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Table 2. Blood-Glucose Experiment With Mixed-Level Design 
and Response Data 

Design Mean 
A G B C D E F H reading 
1 1 1 1 1 1 1 1 97.94 
1 1 2 2 2 2 2 2 83.40 
1 1 3 3 3 3 3 3 95.88 
1 2 1 1 2 2 3 3 88.86 
1 2 2 2 3 3 1 1 106.58 
1 2 3 3 1 1 2 2 89.57 
1 3 1 2 1 3 2 3 91.98 
1 3 2 3 2 1 3 1 98.41 
1 3 3 1 3 2 1 2 87.56 
2 1 1 3 3 2 2 1 88.11 
2 1 2 1 1 3 3 2 83.81 
2 1 3 2 2 1 1 3 98.27 
2 2 1 2 3 1 3 2 115.52 
2 2 2 3 1 2 1 3 94.89 
2 2 3 1 2 3 2 1 94.70 
2 3 1 3 2 3 1 2 121.62 
2 3 2 1 3 1 2 3 93.86 
2 3 3 2 1 2 3 1 96.10 

1.3 Experiment With Hard-to-Control Factors 
The design given in Table 4 was used in a real exper- 

iment on a wood-pulp production process that studied 11 
factors. Quality characteristics such as yield, burst index, 
and opacity were observed. The process consisted of chem- 
ical and mechanical treatments; factors A-G involve the 
chemical treatment, and factors H-K involve the mechan- 
ical treatment. The planned experiment was a PB 20-run 
design with a centerpoint replicated twice (i.e., the total 
run size was 22). Data from only 19 runs were available 
because difficulties were encountered in performing three 
of the runs from the PB design portion. Notice also that 
several of the factors were hard to control, notably factors 
E, I, and K (wood-to-liquid ratio, slurry concentrations at 
two stages); the planned levels were ?1 in runs 1-17 and 
0 in runs 18-19. The actual factor levels and the observed 
quality characteristic, burst index, are given in Table 4. 

1.4 Experiment With Supersaturated Design 
Lin (1993) showed that a half-fraction of a PB design 

could be used as a supersaturated design. He illustrated this 
with a 28-run PB design with 24 factors from an experi- 
ment used to develop an epoxide adhesive system as re- 
ported by Williams (1968). The half fraction (based on an 
unused orthogonal column, yielding runs 1, 3, 4, 6, 8-10, 
13, 17, 22-25, 28) of the original design along with the 

Table 3. Factor Names and Levels, Blood-Glucose Experiment 

Code Variable Levels 
A Wash yes, no 
B Volume in microvial 2.0, 2.5, 3.0 ml 
C Water level in caras 20.0, 28.0, 35.0 ml 
D RMP of centrifuge 2,100, 2,300, 2,500 
E Time in centrifuge 1.75, 3.00, 4.50 minutes 
F Sensitivity absorption .10-2.5, .25-2.0, .50-1.5 
G Temperature 25, 37, 30?C 
H Dilution 1:51, 1:101, 1:151 

corresponding strip adhesion response data are displayed in 
Table 5. This illustrates the use of a 14-run design to study 
23 factors; note that, in the half fraction, factors 13 and 16 
were assigned to the same column so that only factor 13 is 
reported here. 

2. STOCHASTIC VARIABLE SELECTION 
This section reviews one algorithm for variable selec- 

tion based on the Gibbs sampler [see Smith and Roberts 
(1993) and references therein for an overview]. The crite- 
rion of interest is taken to be the posterior probability of 
a model conditional on the data that can be obtained using 
the stochastic search variable-selection (SSVS) algorithm of 
George and McCulloch (1993). The approach can be out- 
lined as follows for the simplest case of linear regression 
with normal errors: 

Y = X'/ + a, (1) 
where 3 may contain main effects, interaction effects, or 
polynomial effects. Importance of effects is captured via 
an unobserved vector 6 of zeros and ones of length p, the 
same length as 3. When 6i = 0, the magnitude of fi is small 
and the corresponding predictor is "inactive." When 6i = 1, 
the magnitude of /i is large and the predictor is "active." 
A normal mixture prior for the coefficients 3 specifies the 
magnitude of active and inactive effects: 

(2) ( -i bi) N(0, (')2) if 68i = f (OlS ) =N(0,(c,T,)2) if 6, =l 1. 

When 6i = 0, /i is tightly centered on 0 and will not have 
a large effect. The much larger variance (ci > 1) when 
6i = 1 allows the possibility of a variable having a large 
influence. The parameters ri and ci are chosen to represent, 
respectively, a "small" effect and how many times larger a 
"large" effect should be. 

A prior on 6 corresponds to a prior on the model. The 
commonly used independence prior implies that the impor- 
tance of any variable is independent of the importance of 
any other variable. This is not the case here because the im- 
portance of interactions can be assumed to depend on the 
importance of their corresponding main effects. Hierarchi- 
cal priors for interactions and polynomial terms, developed 
by Chipman (1996), are used to formally express these re- 
lations in a flexible fashion. These priors are described in 
Section 2.1. 

A prior must also be specified for a; following George 
and McCulloch (1993), we take a2 ~ IG(v/2, vA/2), where 
IG denotes an inverted gamma distribution. This is equiva- 
lent to vA/l2 x 2. 

This specific parameterization is chosen so that a Gibbs 
sampling approach may be used to obtain the posterior for 
6. The Gibbs sampler uses conditional distributions to pro- 
duce a sequence of samples from the posterior distribution. 
Repeated draws are made from the conditional distribution 
of each parameter, conditional on the data and most recently 
sampled values of the other parameters. The resultant sam- 
ple is an approximate sample from the joint posterior of 
the parameters. Such a technique is useful when the pos- 
teriors are not available in closed form, which is the case 
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Table 4. Experiment with Hard-to-Control Factors, Design, and Response Data 

Design 

A B C D E F G H I J K Response 

1 -1.00 1 1 -0.33 -1 1 1 0.74 1 -.89 1.61 
-1 -1.00 1 1 1.63 1 -1 1 -1.02 1 -.76 1.97 
-1 0.99 -1 -1 -1.04 -1 1 1 -0.551 1.85 1.48 

1 1.00 -1 1 1.82 -1 -1 1 0.351 1.03 .55 
1 1.17 -1 -1 0.31 1 1 1 -0.67 1 -1.08 .55 

-1 -1.00 -1 -1 1.00 1 -1 1 0.75 -1 -.87 1.59 
1 1.00 -1 1 -0.57 1 -1 -1 -1.19 -1 2.26 1.64 

-1 -1.00 -1 -1 -0.32 -1 -1 -1 -1.16 -1 -.79 1.50 
1 1.00 1 -1 1.69 -1 1 -1 -1.20 -1 -.87 1.97 

-1 -1.00 -1 1 1.32 -1 1 1 -1.17 -1 2.17 1.67 
1 -0.98 1 -1 1.57 -1 -1 -1 -1.41 1 1.12 1.52 

-1 1.00 1 1 1.61 -1 1 -1 -0.77 -1 -.40 4.37 
-1 1.00 1 -1 -1.06 1 1 1 0.45 -1 2.32 2.38 

1 1.00 1 1 -0.76 1 -1 1 -0.62 -1 -.83 2.04 
-1 -1.00 1 1 -0.33 1 1 -1 -1.69 1 -1.38 2.24 

1 -1.00 -1 1 1.36 1 1 -1 3.35 -1 .66 1.76 
-1 1.00 -1 1 -0.23 -1 -1 -1 1.45 1 -.65 1.73 
0 0.00 0 0 -0.10 0 0 0 -0.09 0 .39 1.74 
0 0.00 0 0 0.05 0 0 0 0.58 0 .16 1.76 

here. Discussion of this technique in general was given by thing except linear, and all-term models. Ten chains were 
Smith and Roberts (1993); George and McCulloch (1993) started from each point. The median time to reach the indi- 
and Chipman (1996) discussed its application to variable cated model was under 150 steps in all four cases, and the 
selection. Here, as given by George and McCulloch (1993), maximum ranged from 345 to 793 steps. This represents 
the algorithm consists of a multivariate normal draw for a small fraction of the 50,000 steps used in the full exam- 
,36, a, an inverse gamma draw for cri3, 6, and p Bernoulli ple. There were 113 effects with correlations in the range of 
draws for 6i 13, a, {j }ji. One implementation issue is how (-.68, .67). Cowles and Carlin (1996) provided an overview 
many starting points to use and how long to run each chain, of convergence and mixing diagnostics for Markov-chain 
In the cases explored here, correlations between samples as Monte Carlo. 
far apart as lag 20 may exist, so it is most efficient to run 
one long chain (typically 50,000 draws) and store every kth 
(typically 5th) draw. Duplicate runs may be used to assess 2.1 Hierarchical Priors for Variable Selection 
the accuracy of the results and determine how long the chain A prior for 6 should capture the dependence relation 
should be run. between the importance of a higher-order term and those 

In variable-selection problems with many effects and lower-order terms from which it was formed. Consider 
large correlations, the "mixing" behavior of the chain is of a simple example in which there are three main effects 
interest. When started from different points, will the chain A, B, C and three two-factor interactions AB, AC, and BC. 
reach the same models? Our experience is positive. In the The importance of, say, AB will depend on whether the 
glucose example, the time to reach the most probable model main effects A and B are included in the model. If neither 
under weak heredity (BH2, B2H2) was recorded using four are, then the interaction seems less plausible and more dif- 
start points. The start points were null, linear only, every- ficult to explain. This belief can be expressed in the prior 

Table 5. Experiment With Supersaturated Design and Response Data 

Design 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 18 19 20 21 22 23 24 Response 
1 1 1 -1 -1 -1 1 1 1 1 1 -1 1 -1 -1 1 -1 1 1 -1 -1 -1 1 133 
1 -1 -1 -1 -1 -1 1 1 1 -1 -1 -1 1 1 1 -1 1 -1 -1 1 1 -1 -1 62 
1 1 -1 1 1 -1 -1 -1 -1 1 - 1 1 1 1 1 1 -1 1 1 -1 45 
1 1 -1 1 -1 1 -1 -1 -1 1 1 -1 1 -1 1 -1 1 1 -1 -1 -1 -1 52 

-1 -1 1 1 1 1 1 1 1-1 -1 -1 1 -1 1 1 -1 1 -1 1 1 1 56 
-1 -1 1 1 1 1 1 -1 1 1 1 -1 -1 1 1 1 1 1 1 1 1-1 -1 47 
-1 -1 1 1 1 1 1 -1 -1 1 1 1 1 1 1 -1 1 -1 1 1 88 
-1 1 1 -1 -1 1 -1 1 -1 1 -1 -1 -1 -1 -_1 -1 -1 1 -1 1 1 1 -1 193 
-1 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1 -1 -1 -1 1 1 32 

1 1 1 1 -1 1 1 1 -1 -1 -1 1 -1 1 1 1 -1 1 -1 1 -1 -1 1 53 
-1 1 1 1 1 -1 1 1-1 1 1 -1 1 -1 -1 1 -1 -1 1 1 -1 -1 -1 1 1 276 

1 1 -1 -1 1 1 -1 1 1 1 1 1-1 -1 -1 -1 1 -1 1 1 1 1 145 
1 11 1 1 1 -1 1 1 1 -1 -1 1- 1 -1 1 -1 -1 1 -1 130 

-1 - 1 1 -1 1 1 1 -1 -1 -1 1 1 -1 1 -1 -1 -1 -1 1 -1 1 -1 -1 127 
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for 6 = (SA, .. , SBC) as follows: 

Pr(6) = Pr(6A) Pr(6B) Pr(Sc) Pr(6ABS6A, SB) 

x Pr(SACJ6A, C) Pr(6BCSB,SC). (3) 

In (3), two principles are used to obtain the simpli- 
fied form. First, the conditional independence principle as- 
sumes that, conditional on first-order terms, the second- 
order terms (6AB, SAC, SBC) are independent. Independence 
is also assumed for main effects. The inheritance princi- 
ple assumes that the importance of a term depends only 
on those terms from which it was formed, implying that 
Pr(6AB 16A, SB, C) = Pr(6AB 6A, 5B). 

The exact nature of this dependence on "parent" terms 
is defined by the components of the joint probability in 
(3). For example, the probability that the term AB is active 
Pr(SAB = 116A,bB) takes on four different values: 

poo if (6A,B) (0,0) 

Pr(*AB -= 16A, 6B) - P0I if (SA, B) = (0,1) (4) Pr(SAB = l[SA, SB) - (4) Pio if (A, 6B) = (1,O) 
Pll if (A,6B)= (1, 1). 

Here, we choose poo small (e.g., .01), po0 and pio larger 
(e.g., .10), and pll largest (e.g., .25). This represents the be- 
lief that a two-factor interaction without parents is quite un- 
likely, one with a single parent is more likely, and one with 
both parents is most likely. The term relaxed weak hered- 
ity will refer to this prior, and setting poo = 0 yields strict 
weak heredity. Probabilities of less than .5 for both main 
effects and interactions represent the belief that relatively 
few terms are active. Such effect sparsity is a reasonable 
assumption for screening experiments. 

This prior may be generalized to polynomials and inter- 
actions involving polynomials. Consider a simple example, 
with fourth-order term A2B2; third-order terms AB2, A2B; 
second-order terms A2, AB, B2; and first-order terms A and 
B. We consider the parents of a term to be those terms of 
the next smallest order that can form the original term when 
multiplied by a main effect. Here, A2B2 has parents A2B 
(because multiplication by B produces A2B2) and AB2. 
Some terms (such as A2) will have only one parent (e.g., A). 
We assume that the importance of a term depends only on 
its parents, an assumption called the immediate inheritance 
principle. The conditional independence principle (which 
now says that terms of a given order are independent given 
all lower-order terms) is applied as before. See Chipman 
(1996) for details and a discussion of other forms of hier- 
archical dependence between variables. 

Another interesting class of predictors is qualitative pre- 
dictors such as treatment, supplier, or location. Although 
not present in our examples, such variables arise in screen- 
ing experiments, often in the form of three-level factors. 
Dummy variables are commonly used in such a situation, 
but typically one wants either all or none of the variables to 
be included in the model. Chipman (1996) gave a prior for 
6 that forces all associated dummy variables to be active 
or inactive. Extensions to interactions involving qualitative 
factors are straightforward. 

2.2 Choice of Additional Prior Parameters 
Several prior parameters need to be specified. The nor- 

mal mixture prior on /3 has parameters r and c, and the 
inverse gamma prior for a has parameters v and A. Be- 
cause this methodology is used as a tool rather than strictly 
for Bayesian reasons, we view these parameters as tuning 
constants as well as representations of prior information. 

As Box and Meyer (1986) did, we use c = 10, which 
indicates that an important effect is an order of magnitude 
larger than an unimportant one. For the choice of r, we 
take, as did George and McCulloch (1993), 

Tj = AY/3AXj, (5) 

where AY represents a "small" change in Y and AXj rep- 
resents a "large" change in Xj. This implies that, if 6j = 0, 
even a large change in Xj is unlikely to produce anything 
more than a small change in Y. AXj = max(Xj) - 
min(Xj) is used unless the Xj are not set at their intended 
levels. Details of this latter case are given in Section 3.3. 
A value of AY still must be chosen. When expert opinions 
are not available, 

AY = /var(Y)/5, 

where var(Y) is the sample variance of the response with- 
out any regression, is found to work well in practice. This 
choice corresponds to the belief that, after a model is fit to 
the data, a will be roughly 20% of the unadjusted standard 
deviation. 

Choice of r can be quite influential for the posterior be- 
cause it defines the magnitude of an important coefficient. A 
parameter of this nature is usually a component of Bayesian 
model selection. For example, Box and Meyer (1993) used 
7, a prior variance for 3 that serves the same role. They 
recommended choosing the posterior mode of this parame- 
ter; here we use several values near the first guess to assess 
sensitivity of posteriors to this parameter. 

Sensitivity to r may be viewed as an advantage of the pro- 
cedure because it allows the user to choose different mod- 
els by fine-tuning the parameter T. Unless there is a strong 
belief or past knowledge to suggest the choice of r, the 
appropriateness of a chosen r may be judged by the mod- 
els (or posterior model probabilities) it generates. Too few 
or too many active terms may be considered inappropriate. 
Our deliberations in the choice of models in Sections 3.1 
and 3.3 illustrate this point well. Often the experimenter has 
much better prior knowledge about model size than about 
the numeric value of a prior parameter like r. 

An improper prior (i.e., v = 0) for a is not appropriate 
because this allows a to be close to 0. When the number of 
predictors outnumber the observations, this prior will result 
in a posterior with very small a values and many terms in 
the model. An informative prior on a corrects this. The as- 
sumption that a x /var(Y)/5 suggests that a prior on a 
with a mean equal to vvar(Y)/5 be used. Among these pri- 
ors, the desirable spread may be attained by selecting a prior 
with an upper quantile (say 99%) that is near /var(Y). This 
approach often yields a value of v near 2, which corre- 
sponds to a reasonably uninformative prior. The value of A 
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changes from experiment to experiment because it depends 
on the scale of the response measurement. 

3. ANALYSIS 
The Bayesian hierarchical model-selection methodology 

presented in Section 2 will be illustrated using the four 
examples given in Section 1. 

3.1 Screening Design Experiment 
The data were originally constructed by Hamada and Wu 

(1992) to illustrate that their stepwise strategy for variable 
selection could have difficulties identifying interactions if 
the corresponding main effects were smaller. The stepwise 
nature of their procedure caused it to miss all three active 
terms, which suggests that the proposed approach might be 
more effective. 

Because the true model is known, we used several dif- 
ferent priors to assess the influence of different parameters. 
For the prior on r, (v, A) = (1.5, .0015), (1.5, .038), (1.5, .15) 
were investigated. The parameter A was varied because it 
represents the location of the prior on o. Choosing v = 1.5 
implies a reasonably uninformative prior. The first and 
third priors are intended to represent "extreme" situations, 
whereas the middle value was chosen using the /var(Y) 
rule. Because conclusions were insensitive to A, only results 
for the automatically chosen A = .038 are given here. 

We also need to specify the probabilities that factors are 
active. A relaxed weak heredity prior will be used (see Sec. 
2.1), with 

Pr(A = 1) = .25 

.01 if 6A = B = 0 
Pr(SAB =1) = .10 if 6A B 

.25 if A = B = 1. 

A, B, and AB represent arbitrary main effects and inter- 
actions. This prior allows interactions to be active if only 
one parent term is active, and even if both parents are in- 
active, there is a small probability that the interaction will 
be active. 

The posteriors are insensitive to choice of c, but changes 
in T have more influence. The estimate based on the rule 
of thumb (5) is r* = .105. To examine the robustness 
of conclusions to r, we performed analyses with r*/2, r*, 
and 2r*. 

The Gibbs algorithm was started from a model with no 
active terms, run 10,000 cycles, and every tenth sample 
saved. Examination of autocorrelations and output from 
several independent runs confirmed that convergence and 
mixing occurred quickly, and that the suggested number 

Table 6. Screening Experiment Posterior Model Probabilities 
(true model A, B, AB) 

Model r*/2 r* 2r* 

A, AB, AC .103 .325 .094 
A, C, AB, AC .016 .039 .009 
A, B, AB, AC .018 .022 .008 
I, DF - - .013 
K, GJ .009 
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Figure 1. Screening Experiment Marginal Posterior Probabilities. 
Bars for interactions with small probabilities have narrow widths. 

of runs is adequate. Table 6 and Figure 1 give joint and 
marginal posteriors for three different values of r. Although 
the correct model has the most mass in all three cases, there 
is considerable dependence on r. When a small value is 
used (r*/2), too many effects are considered "large," lead- 
ing to less model certainty. As r increases to T*, there is 
less model uncertainty, and the correct model receives the 
most mass. As r increases further to 2r*, there is again less 
model certainty. The behavior of the algorithm for large r 
values is better understood by looking at the marginal dis- 
tributions. From them, it is clear that no term appears to 
be important, as one would expect when r is too large. 
The correlations between the many candidate terms result 
in many models receiving some posterior mass, many of 
them nonsensical. 

In this case, the method works quite well and clearly 
identifies the correct model. It succeeds because it searches 
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the entire model space, in a nonstepwise fashion. The prior 
for 6 serves to focus attention on certain elements of the 
model space while not totally excluding others. This class of 
likely models is much larger than the one used by Hamada 
and Wu (1992). 

3.2 Blood-Glucose Experiment 
Recall that the blood-glucose experiment [also analyzed 

by Hamada and Wu (1992)] consists of continuous factors 
in either two (factor A) or three levels. The three-level 
factors are quantitative and allow entertainment of poly- 
nomial terms and interactions. There are 15 df for the main 
effects and an additional 98 two-factor interactions to be 
considered. None are totally correlated so that all 113 can- 
didate variables will be considered simultaneously. Linear 
and quadratic terms will be used throughout, with interac- 
tions having four components-linear by linear, linear by 
quadratic, quadratic by linear, and quadratic by quadratic. 
Choice of (v, A) = (2, 1.289) is based on the automatic pro- 
cedure of Section 2.2. Values of c = 10 and r = 2r*, where 
r* is the automatic choice, were used. The hierarchical pri- 
ors used are 

Pr(A = 1) = .25 

Pr(6A2 = 1A) { .0125 if 6A 
= 

.01 if 6AB 
Pr(6AB2 = 1IAB,SB2) - .10 if 6AB 

.25 if 6AB 

0 
1 

= 6B2 = 0 

6B2 
= (B2 - 1. 

This is a challenging problem because there are only 18 
observations and 113 terms from which to choose. Because 
there are so many variables, there will likely be many mod- 
els that fit the data well and probably quite a few parsi- 
monious ones. The hierarchical priors will be useful here 
because they will focus attention on good models that also 
make sense. 

The complexity of the problem is apparent in the simu- 
lation, which takes much longer to mix sufficiently. Every 
fifth draw from a chain of length 50,000 was found suffi- 
cient. When relaxed weak heredity priors are used, the most 
probable model contains two terms, BH2 and B2H2. This 
model clearly violates even weak heredity, so there must 
be a good reason for its large mass. The 10 most probable 
models are given in Table 7. The prevalence of models that 
contain both BH2 and B2H2 may suggest a nonlinear re- 
lation involving these two variables (B = volume of blood, 
H = dilution ratio). That none of the models obey weak 
heredity may be an indication of the need for transforma- 
tions. 

Rerunning the algorithm with strict weak heredity (0 re- 
placing probabilities of .01) gives the results in Table 8. 
We see that the best model is a superset of the previous 
best, with the appropriate terms for weak heredity added 
(namely, B and BH). Other models involving EF also ap- 
pear possible but less likely. The fit of this model, indicated 
by an R2 of .86, is quite good. Both models are improve- 
ments over the model Hamada and Wu (1992) reported with 
E2, F2, and EF and R2 = .68, a model that does not obey 

Table 7. Blood-Glucose Experiment Posterior Model 
Probabilities, Relaxed Weak Heredity Prior 

Model Prob. R2 

BH2, B2H2 .183 .7696 
B, BH2, B2H2 .080 .8548 
B, BH, BH2, B2H2 .015 .8601 
F, BH2, B2H2 .014 .7943 
GE, BH2, B2H2 .013 .8771 
AH2, BH2, B2H2 .009 .8528 
G2D, BH2, B2H2 .009 .8517 
A, BH2, B2H2 .008 .7938 
B, B2, BH2, B2H2 .008 .8864 
H, BH2, B2H2 .008 .7855 

the current definition of weak heredity. The additional infor- 
mation gained from comparing posteriors originating from 
weak and strict forms of the prior tells us that it is the 
higher-order interactions between B and H that really drive 
the model, which may indicate that caution should be exer- 
cised in identifying a single "best" model. 

One of these models was also identified by Jan and Wang 
(1994). They identified a model with B, BH2, and B2H2 
terms, similar to the one identified by our procedure. In fact 
the same model can be identified using a modified strategy 
recommended by Hamada and Wu (1992, p. 136). Both the 
Hamada-Wu and Jan-Wang procedures find only one opti- 
mal model rather than a set of plausible ones. 

The two model-probability posteriors (under relaxed and 
strict weak heredity) are quite different. Although the 
change in priors for 6 from probabilities of .01 (relaxed) to 
0 (strict) seems small, this represents a substantial change. 
The strict prior states that numerous models are impossible, 
whereas the relaxed prior merely downweights them. Some 
of these downweighted models fit the data well, so there is 
a large shift in the posterior when the priors are changed. 

If hierarchical priors are replaced with an independence 
prior, the posterior becomes much less peaked. In this prob- 
lem, if the same priors are used but with interactions and 
higher-order terms having Pr(i = 1) = .1 independently of 
other terms, the most probable model is visited only three 
times in 10,000, a rough posterior probability of .0003. This 
illustrates that, without hierarchical priors, only marginal 
distributions contain relevant information in complex alias- 
ing problems. It is not sufficient to set the independent 
probabilities small because there are still too many possible 
models that are nonsensical. 

Table 8. Blood-Glucose Experiment Posterior Model 
Probabilities, Strict Weak Heredity Prior 

Model Prob. R2 

B, BH, BH2, B2H2 .146 .8601 
B, BH, B2H, BH2, B2H2 .034 .8828 
H, H2, BH2, B2 H2 .033 .7903 
H, BH, BH2, B2H2 .031 .7908 
F, F2, DF, D2F, EF .024 .8835 
H, H2, AH2, BH2, B2H2 .017 .8735 
B, B2, BH, BH2, B2H2 .013 .8917 
B, H, BH, BH2, B2H2 .013 .8760 
B, H, H2, BH2, B2H2 .008 .8756 
E, E2, CE, EF .008 .6979 
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To relate our proposed procedure to more traditional 
methods, (traditional) stepwise and best subsets regres- 
sions were run on the dataset. If a stepwise signifi- 
cance level of .05 is used, a six-term model containing 
BH2, B2H2, GE, AH2, H, and EF2 is identified. The or- 
dering of the terms is the order in which they were entered. 
Other models identified as promising by our procedure are 
not found. This is not because these models are much worse 
but because of the limited nature of the stepwise search. 
Moreover, none of the models identified by stepwise selec- 
tion obey weak heredity. 

For a more complete search than stepwise, all subsets se- 
lection was carried out. To make the search feasible, only 
models with six or fewer terms were considered. The pro- 
cedure took three days to run on a SPARCstation 20. The 
best 50 models of each size were recorded. None of these 
300 models obey weak or strong heredity. Although these 
models have a higher R2, they are not ones that would be 
used in practice because they do not obey heredity rules. 

3.3 Hard-to-Control-Factors Experiment 
As discussed in Section 1.3, some predictors could be 

controlled during the experiment, resulting in complex 
aliasing. In this experiment, the variables A-G and H-K are 
considered to be noninteracting groups so that interactions 
between them are not entertained. All other interactions are 
considered. Although all the predictors are continuous, only 
a single quadratic term may be considered because of the 
structure of the center run (the -1, +1 levels all map to 
1, resulting in very high correlations between all quadratic 
terms). This results in a total of 39 predictor terms. 

The prior parameters (v, A) are chosen to be (2, .00458), 
giving a mean of .12 for a and an upper 99% quantile of .66, 
slightly larger than the unadjusted standard deviation of Y, 
calculated to be .60. The ranges of Xj's will not be used to 
determine AXj here because of the large outliers in some 
of the uncontrolled predictors. Instead we shall assume that 
the original settings of (-1, +1) represent large changes and 
take AXj = 2 for all main effects and interactions except 
A2, which will have a value of 1. The AY/3AXi rule is used 
as a starting point for r. The posteriors have an average of 
10 active terms with this automatic choice of r. Because 
more parsimonious models are desired, the procedure was 
rerun after doubling the value of r. Every fifth draw from 
a run of length 50,000 was used. 

Table 9. Hard-to-Control-Factors Experiment 
Posterior Model Probabilities 

Model Prob. R2 

A, C, AF, CF .0458 .7973 
A, C, D, AF, CF .0200 .8488 
A, C, F, AF, CF .0127 .7986 
A, C, J, AF, CF .0123 .8425 
A, C, D, J, AF, CF .0100 .9034 
A, B, C, D, J, DG .0079 .8886 
A, C, AC, AF, CF .0065 .8209 
A, C, D, G, J, BD .0063 .8854 
A, C, J, AB .0059 .7480 
A, C, D, J, AB .0054 .8206 
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Figure 2. Hard-to-Control-Factors Experiment Marginal Posterior 
Probabilities. Every alternate bar is labeled. The full set of labels are 
A. . .K, A2, and interactions (A. . .G) x (A. . .G), (H. . K) x (H. . K). 

Posterior probabilities for the model are displayed in 
Table 9, and marginal posteriors are given in Figure 
2. The small probability (.0458) on the most probable 
model indicates considerable model uncertainty. The terms 
A, C, AF, CF seem important because they appear in al- 
most all of the most probable models and have high 
marginal probabilities of being active. 

3.4 Supersaturated-Design Experiment 
When analyzing the 14-run supersaturated design, we re- 

stricted our attention to main-effect-only models because 
there are already more effects than observations. Because 
the supersaturated design is a screening design, this seems 
to be a reasonable approach. The automatic procedures were 
used to choose the regression coefficient priors, and the 
hierarchical priors of Section 3.1 were used in the vari- 
able selection. The values used were A = 67, v = 2, r = 
2.31, c = 10, which appear to produce reasonable results 
with no modifications. The joint posteriors, which are based 
on every fifth draw from 50,000 cycles of the chain, are 
given in Table 10. 

The results suggest that factors 4, 12, 15, 20 (and per- 
haps 10) are active, as Lin (1993) found from his analysis. 
Although the proposed Bayesian methodology did not find 
any different results, its more thorough search and flexible 
priors will work to its advantage in larger experiments that 
have more candidate models. 

Table 10. Supersaturated-Design Experiment 
Posterior Model Probabilities 

Model Prob. R2 

4 12 15 20 .0266 .955 
4101215 20 .0259 .973 
4 10 11 12 15 20 .0158 .987 
4 12 15 20 21 .0120 .969 
4 11 12 15 20 .0082 .966 
471011 121520 .0076 .998 
1 4 12 15 20 .0074 .970 
4 12 13 15 20 .0071 .964 
1 4 10 12 15 20 .0066 .982 
1 4 12 15 17 20 .0064 .978 
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4. DISCUSSION 
Data with complex aliasing arise in numerous situa- 

tions-experiments using two-level nongeometric screen- 
ing designs, multilevel and mixed-level fractional factorial 
designs and nearly orthogonal designs, experiments with 
hard-to-control factors and with mistakes in setting the fac- 
tor levels, and experiments using supersaturated designs. 
Moreover, observational data will typically have complex 
aliasing. Because data with complex aliasing arise often, an 
efficient analysis methodology is desirable. Hamada and Wu 
(1992) showed that information about interactions could be 
obtained in such situations and proposed an iterative guided 
stepwise regression strategy. 

This article presents a more efficient methodology be- 
cause it searches the model space more thoroughly, much 
like an all-subsets regression except that a plausible class 
of models is considered. Moreover, the proposed method- 
ology requires much less computation because the search is 
done stochastically rather than fitting all possible models. 
A Bayesian approach combined with the recent advances 
in Bayesian computing provides a quick and easy imple- 
mentation of this strategy. The flexible hierarchical priors 
of Section 2.1 provide a powerful way to concentrate the 
search on a reasonable class of models. An advantage of 
the Bayesian approach is that models strongly suggested 
by the data but that fall outside the reasonable class of 
models defined by the hierarchical priors can be identified. 
Moreover, the proposed methodology can identify several 
(perhaps incompatible) models that explain the data equally 
well. We used the proposed methodology on Hamada and 
Wu's (1992) constructed example 5, a 12-run PB design 
with true model Y = 2A + 4C + 2BC - 2CD + e, where 
E is normally distributed with mean 0 and standard devia- 
tion .5. The proposed methodology quickly found several 
incompatible but equally plausible models (i.e., models that 
obey effect heredity). This illustrates a limitation of the PB 
designs that may require additional experimentation to re- 
solve. Nevertheless, it is important for the experimenter to 
know that several models fit the data well. Finally, the pos- 
terior probability of a model provides a calibrated measure 
of a model's goodness but does not require adjustment for 
the number of effects in the model. In fact, the posterior 
probability uses prior information about relationships be- 
tween terms to discriminate between models with similar 
R2, as seen in Tables 7-10. Note that the best model in the 
examples not only had a larger posterior probability but, 
interestingly enough, also had fewer effects than the next 
best model. 

If the search procedure identifies several models with 
comparable posterior probabilities or when the largest pos- 
terior probability is small, it is an indication that the data 
are not informative enough about the exact model. The in- 
vestigator may use knowledge in the substantive areas to 
choose among the models. Otherwise a follow-up experi- 
ment may be conducted to resolve model uncertainty. See 
Meyer, Steinberg, and Box (1996) for a related method of 
constructing follow-up designs. 
TECHNOMETRICS, Vol. 39, No. 4, NOVEMBER 1997 

Our article adopted the SSVS algorithm of George and 
McCulloch (1993) to obtain the model posterior proba- 
bilities. The key aspects of this method are the stochas- 
tic search and hierarchical priors. Our hierarchical priors 
could be used in conjunction with other stochastic search 
approaches-for example, those of Raftery, Madigan, and 
Hoeting (1997) and Geweke (1995) and a conjugate ver- 
sion of SSVS (George and McCulloch 1997). We feel that 
the choice of algorithm will not influence the conclusions 
reached because most approaches are similar in spirit. Hier- 
archical priors could be used with methods that enumerate 
the entire model space (e.g., Mitchell and Beauchamp 1988; 
Box and Meyer 1986, 1993). Such methods would be too 
time consuming in complex aliasing problems, however. 

Box and Meyer (1993) proposed an alternative Bayesian 
approach for analysis of complex aliasing data. They fo- 
cused on factors rather than specific effects. Their proposal 
can be summarized as follows. Suppose there are k fac- 
tors. Using an independence prior on the "factors," each 
factor has prior probability 7r of being active. Then, for 
each of the 2k subsets of the k factors, a posterior model 
probability given the data (for a specific model) is calcu- 
lated. Say, there are i factors in a particular subset. Then 
the corresponding model has all the main effects and two- 
factor and three-factor interactions (provided that i is at 
least 2 and 3, respectively). Note that the number of effects 
in some of the models will exceed the number of observa- 
tions. Box and Meyer (1993) used an independence prior 
for all the effects-that is, regression coefficients /, which 
does not differentiate between main effects and interactions. 
The posterior model probabilities are calculated directly, 
which can be computationally intensive. Active factors are 
identified using marginal posterior probabilities-that is, 
the sum of posterior probabilities for all the models given 
previously containing a particular factor. In contrast, our 
proposed methodology focuses on effects rather than fac- 
tors and, in addition to marginal posteriors, considers joint 
posterior probabilities-namely, posterior probabilities of 
models. Our methodology requires less computation than 
an all-subsets approach or exhaustive search (such as that 
used by Box and Meyer) because the search through the 
model space is done stochastically. Moreover, the search is 
focused on, though not restricted to, a class of reasonable 
models through the specification of flexible hierarchical 
priors. 

ACKNOWLEDGMENTS 

We thank the associate editor and two referees for many 
insightful comments on earlier versions of this article. H. 
Chipman was supported by funding from the University of 
Chicago Graduate School of Business. M. Hamada was sup- 
ported by research grants from General Motors of Canada 
Limited, the Manufacturing Research Corporation of On- 
tario, and the Natural Sciences and Engineering Research 
Council of Canada. C. F. J. Wu was supported by National 
Science Foundation grant DMS 9404300. 

[Received March 1995. Revised March 1997.] 

380 

This content downloaded from 131.162.130.96 on Thu, 6 Nov 2014 09:02:43 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


BAYESIAN VARIABLE SELECTION FOR DESIGNED EXPERIMENTS WITH COMPLEX ALIASING 

REFERENCES 

Box, G. E. P., and Meyer, R. D. (1986), "An Analysis for Unreplicated 
Fractional Factorials," Technometrics, 28, 11-18. 

(1993), "Finding the Active Factors in Fractionated Screening Ex- 
periments," Journal of Quality Technology, 25, 94-105. 

Chipman, H. (1996), "Bayesian Variable Selection With Related Predic- 
tors," Canadian Journal of Statistics, 24, 17-36. 

Cowles, M. K., and Carlin, B. P. (1996), "Markov Chain Monte Carlo Con- 
vergence Diagnostics: A Comparative Review," Journal of the American 
Statistical Association, 91, 883-904. 

Daniel, C. (1976), Applications of Statistics to Industrial Experiments, New 
York: Wiley. 

George, E. I., and McCulloch, R. E. (1993), "Variable Selection Via Gibbs 
Sampling," Journal of the American Statistical Association, 88, 881-889. 

(1997), "Approaches to Bayesian Variable Selection," Statistica 
Sinica, 7, 339-373. 

Geweke, J. (1995), "Variable Selection and Model Comparison in Regres- 
sion," in Proceedings of the Fifth Valencia International Meeting on 
Bayesian Statistics, eds. J. O. Berger, J. M. Bernardo, A. P. Dawid, and 
A. F. M. Smith, Oxford, U.K.: Oxford University Press. 

Hamada, M., and Wu, C. F. J. (1992), "Analysis of Designed Experiments 
With Complex Aliasing," Journal of Quality Technology, 24, 130-137. 

Hall, M., Jr. (1961), "Hadamard Matrices of Order 16," Research Summary 
36-10, pp. 1, 21-26, Jet Propulsion Laboratory, Pasadena, CA. 

Henkin, E. (1986), "The Reduction of Variability of Blood Glucose Lev- 
els," in Fourth Supplier Symposium on Taguchi Methods, Dearborn, MI: 
American Supplier Institute, pp. 758-785. 

Hunter, G. B., Hodi, F. S., and Eager, T. W. (1982), "High-Cycle Fatigue 

of Weld Repaired Cast Ti-6A1-4V," Metallurgical Transactions, 13A, 
1589-1594. 

Jan, H. W., and Wang, P. C. (1994), "Analysis of Experimental Data From 
Orthogonal Main-Effect Plans," unpublished manuscript. 

Lin, D. K. J. (1993), "A New Class of Supersaturated Designs," Techno- 
metrics, 35, 28-31. 

Meyer, R. D., Steinberg, D. M., and Box, G. (1996), "Follow-up Designs to 
Resolve Confounding in Multifactor Experiments," Technometrics, 38, 
303-313. 

Mitchell, T. J., and Beauchamp, J. J. (1988), "Bayesian Variable Selection 
in Linear Regression," Journal of the American Statistical Association, 
83, 1023-1036. 

Plackett, R. L., and Burman, J. P. (1946), "The Design of Optimum Mul- 
tifactorial Experiments," Biometrika, 33, 305-325. 

Raftery, A., Madigan, D., and Hoeting, J. (1997), "Bayesian Model Averag- 
ing for Linear Regression Models," Journal of the American Statistical 
Association, 92, 179-191. 

Smith, A. F. M., and Roberts, G. 0. (1993), "Bayesian Computation via 
the Gibbs Sampler and Related Markov Chain Monte Carlo Methods," 
Journal of the Royal Statistical Society, Ser. B, 55, 3-23. 

Wang, J. C., and Wu, C. F. J. (1991), "An Approach to the Construction of 
Asymmetrical Orthogonal Arrays," Journal of the American Statistical 
Association, 86, 450-456. 

(1992), "Nearly Orthogonal Arrays With Mixed Levels and Small 
Runs," Technometrics, 34, 409422. 

Williams, K. R. (1968), "Designed Experiments," Rubber Age, 100, 65-71. 
Wu, C. F. J. (1993), "Construction of Supersaturated Designs Through 

Partially Aliased Interactions," Biometrika, 80, 661-669. 

TECHNOMETRICS, Vol. 39, No. 4, NOVEMBER 1997 

381 

This content downloaded from 131.162.130.96 on Thu, 6 Nov 2014 09:02:43 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

	Article Contents
	p. 372
	p. 373
	p. 374
	p. 375
	p. 376
	p. 377
	p. 378
	p. 379
	p. 380
	p. 381

	Issue Table of Contents
	Technometrics, Vol. 39, No. 4 (Nov., 1997), pp. 347-440
	Volume Information [pp. 437-440]
	Front Matter [pp. 423-423]
	Compound D- and D<sub>s</sub>-Optimum Designs for Determining the Order of a Chemical Reaction [pp. 347-356]
	Time Series Characterization, Poisson Integral, and Robust Divergence Measures [pp. 357-371]
	A Bayesian Variable-Selection Approach for Analyzing Designed Experiments with Complex Aliasing [pp. 372-381]
	Fractional Resolution and Minimum Aberration in Blocked 2<sup>n-k</sup> Designs [pp. 382-390]
	Statistical Inference of a Time-to-Failure Distribution Derived from Linear Degradation Data [pp. 391-400]
	Robust Calibration [pp. 401-411]
	Adaptive Inference for the Two-Sample Scale Problem [pp. 412-422]
	Book Reviews
	Review: untitled [pp. 424]
	Review: untitled [pp. 425]
	Review: untitled [pp. 425-426]
	Review: untitled [pp. 426]
	Review: untitled [pp. 426]
	Review: untitled [pp. 426-427]
	Review: untitled [pp. 427]
	Review: untitled [pp. 427-428]
	Review: untitled [pp. 428-429]
	Review: untitled [pp. 429]
	Review: untitled [pp. 429-430]
	Review: untitled [pp. 430-431]
	Review: untitled [pp. 431]
	Review: untitled [pp. 431]
	Review: untitled [pp. 431]
	Review: untitled [pp. 431-432]
	Editor Reports on New Editions, Proceedings, Collections, and Other Books
	Review: untitled [pp. 432]
	Review: untitled [pp. 432-433]
	Review: untitled [pp. 433]
	Review: untitled [pp. 433]
	Review: untitled [pp. 433]
	Review: untitled [pp. 433-434]
	Review: untitled [pp. 434]
	Review: untitled [pp. 434]
	Review: untitled [pp. 434]
	Review: untitled [pp. 434-435]

	Correction: Design and Optimization in Organic Synthesis [rather than Experimental Design and Chemical Synthesis] [pp. 435]
	Correction: Complex Stochastic Systems and Engineering [pp. 435]

	Back Matter [pp. 436-436]



