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We congratulate Viele, Kass, Tarr, Behrmann and Gautier (VKTBG
hereafter) for an interesting and thoughtful analysis of this dataset. The
basic problem is to determine how the two Prosopagnosia subjects, CR
and SM, compare to the controls in their ability to distinguish between
similar objects. In the experiment considered, this ability is represented by a
contrast function of each subject’s hit and false alarm probabilities, namely
P (R = 1|A = 1) and P (R = 0|A = 1), where the actual value A and subject
response R take values 1 for “different” and 0 for “same”. Both the hit and
alarm probabilities vary across subjects S = CR/SM/Control, image type
I=Greeble/Object/Face, image closeness C=Easy/Difficult, and decision
time T=Brief/Long. The challenge of the analysis is to understand what
aspect, if any, of this variation is attributable to Prosopagnosia. In this
discussion, we first suggest a simple Bayesian analysis that sheds light on
what the data may tell us, and then consider some of the difficulties that
arise in modeling the response probabilities.

A Simple Bayesian Analysis

The most basic unknown quantities in this problem are the response prob-
abilities

P (R = 1|A, I, C, T, S)

for each of the 2×3×2×2×3 = 72 different combinations of A, I, C, T, S. All
of the comparison quantities of interest are functions of these probabilities.
For example, each subject’s ability to distinguish images can be summarized
by the simple contrast

δ(I, C, T, S) = P (R = 1|A = 1, I, C, T, S)− P (R = 1|A = 0, I, C, T, S)

Values of δ larger than 0 indicate ability better than random guessing, and
ability increases with δ.
A comparison of the abilities of the two Prosopagnosia subjects with the

abilities of controls is then captured by the differences

∆CR(I, C, T ) = δ(I, C, T, S = CR)− δ(I, C, T, S = control)

and

∆SM(I, C, T ) = δ(I, C, T, S = SM)− δ(I, C, T, S = control).

Negative values of ∆CR(I, C, T ) and ∆SM(I, C, T ) would indicate that
CR and SM suffer from inferior visual discrimination abilities. Note that
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∆CR(I, C, T ) and ∆SM(I, C, T ) only vary over the 12 possible combina-
tions of the remaining variables (I, C, T ), a substantial decrease from the
72 probabilities from which these quantities were formed.
To learn about the unknown values of ∆CR(I, C, T ) and ∆SM(I, C, T ),

we take a simple Bayesian approach. By putting independent uniform pri-
ors on each of the 72 unknown response probabilities, we use the data to
induce posterior distributions on ∆CR(I, C, T ) and ∆SM(I, C, T ). For cal-
culation, it is trivial to simulate these posteriors by simulating draws from
the 72 response probability posteriors.
To get some feel for what the data can tell us about ∆CR(I, C, T ) and

∆SM(I, C, T ), we simulated boxplots of their posterior distributions in
Figure 1. The induced prior on these quantities is also plotted and seems
relatively noninformative by comparison. The posterior boxplots are orga-
nized into four groups corresponding to the four combinations of image
closeness C=Easy/Difficult and decision time T=Brief/Long. Within each
group, the three image types I=Greeble/Object/Face can then be com-
pared.
¿From the boxplots, we see immediately that, with one exception, there

is strong evidence that ∆CR(I, C, T ) and ∆SM(I, C, T ) are all negative
indicating that CR and SM have inferior visual discrimination abilities.
The one exception is SM in the (Easy, Long, Greebles) setting, where SM
appears to be even better than the controls. This is all consistent with the
findings of VKTBG. However, it hard to see that much more can concluded.
For Brief durations, CR is worst on Greebles, but SM is worst on Faces.
There seem to be some similar patterns within the Long and Brief groups,
suggesting a large main effect for time. Unfortunately, such conclusions are
tentative at best. If there were more Prosopagnosia subjects, it would be
natural to consider using a random effects model for inference. However,
given the limitation of only two Prosopagnosia subjects, it seems unreason-
able to extrapolate any conclusions to the Prosopagnosia population.
It would be straightforward to modify the above analysis using a different

contrast scale, replacing δ(I, C, T, S) above by

δg(I, C, T, S) = g(P (R = 1|A = 1, I, C, T, S))−g(P (R = 1|A = 0, I, C, T, S))

for some monotonic g : [0, 1]→ R. Indeed, VKTBG use just such a contrast
with the probit transform g = Φ−1, and the logit transform might be
reasonable too. Use of the probit or logit scale allows for finer comparisons
between probabilities near 0 or 1 by exaggerating small differences in those
regions. Because so many of the response probabilities seem to be near
0 or 1, see Figure 2 of VKTBG, such rescaled contrasts could make a
substantial difference in our above analysis, and it might be interesting
to explore this further. In some contexts, such as disease modeling, such
differences between very small probabilities can be quite relevant, although
it is less clear to us why they are important here. In any case, an advantage
of using the untransformed probability scale with δ(I, C, T, S) is that it is
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FIGURE 1. Posterior boxplots for ∆CR(I, C, T ) and ∆SM(I, C, T ). Cases
grouped by C=Easy/Difficult, T=Brief/Long and I=Greeble/Object/Face. Prior
distribution is on the right.
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so easy to understand. It is interesting to note that VKTBG used the
untransformed probability scale on the axes of their Figure 2, implicitly
indicating its intuitive value.

Regression Modeling

To exploit the possibility of some underlying systematic structure across
the 72 response probabilities, P (R = 1|A, I, C, T, S), VKTBG consider se-
lection of a probit regression model with R as the response, and A, I, C, T, S

and all their interactions as potential predictors. If a large number of these
potential predictors could justifiably be dropped from the model, then such
a regression would provide improved contrast estimates. For this purpose,
VKTBG use a hybrid stepwise-MCMC algorithm in conjunction with BIC
to explore the model space and select models. Although the hybrid search
algorithm seems to be a worthwhile strategy, we are skeptical that BIC is at
all meaningful here. As is exemplified by the absence of a clear value for the
sample size n, their use of BIC is effectively arbitrary. Furthermore, relying
on an automatic approximation like BIC rather than an interpretable prior
yields an uninterpretable posterior. This cannot be recommended when the
goal is serious scientific inquiry.
However, coming up with a reasonable prior for this application is by

no means straightforward, and we can only suggest some practical con-
siderations, see also Chipman, George and McCulloch (2001). A possible
starting point for the coefficient priors of each model M might be the nor-
mal βM ∼ N(0, τ2I) or βM ∼ N(0, τ2(X ′

MXM )
−1), although this is not

entirely realistic. For example, we would expect P (R = 1|A = 1) to decrease
as difficulty increases, suggesting a negative prior mean for the coefficient
of difficulty. Unfortunately, incorporating such considerations across all in-
teractions in all possible models is simply not feasible. The choice of τ 2 for
this prior could be guided by studying the variation of Φ(a+ b) when Φ(a)
is a “ball park” choice for the response probability at a “typical” set of pre-
dictor values and b ∼ N(0, τ 2) represents a coefficient in the model. One
could choose a sufficiently large value for τ 2 to ensure that Φ(a+ b) varies
over a substantial portion of (0,1). For choosing the model space compo-
nent of the prior, we would be inclined to put decreasing prior probability
on higher order interactions. This could be accomplished with VKTBG’s
approach of restricting attention to graphical models or with the flexible
approach of Chipman (1996).
Beyond the issue of variable selection, it seems that other sources of

model uncertainty might be even more important. For example, one might
want to consider link functions other than the probit, one might want to
consider different models for P (R = 1|A, I, C, T, S) when A = 0 or 1, and
so on. Another possibility would be alternative nonlinear models such as
CART, which would segment the 72 response probabilities into homoge-
neous groups. This could be effective if there were but a few strong interac-
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tions, and other interactions were negligible. In fact, when we first examined
the data in this paper, we were hopeful that Bayesian CART (Chipman,
George and McCulloch 1998) would uncover such simple structure and
yield improved contrast estimates. Unfortunately, preliminary cross valida-
tion explorations indicated that very large trees (over 40 nodes out of a
possible 72) do not overfit this data, suggesting a complicated interaction
structure. Yet another alternative that we still plan to explore on this data
is treed modeling (Chipman, George and McCulloch 2002). This would en-
tail segmenting the response probabilities into different groups that follow
different models.
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