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ABSTRACT

A common criticism of many methods for constructing tree models is that a single tree or nested
sequence of trees is produced, and that much uncertainty about the tree structure is ignored. Recent
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a much richer collection of trees. They lead to an embarrassment of riches, in that it may be di�cult
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although hundreds of distinct trees are identi�ed, many will di�er only at a few nodes. Other trees
may have di�erent topologies, but produce similar partitions of the predictor space. By de�ning
several distance metrics on trees, we summarize a forest of trees by several representative trees and
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trees to examine while simultaneously adjusting for the goodness-of-�t of the trees considered.
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1 Introduction

Recent research in tree models has produced an embar-
rassment of riches. By using any one of several di�er-
ent techniques, an analyst is able to generate a num-
ber of tree models that describe the same data set well.
In some situations, these models can be quite di�erent,
while in other cases, they may be small variations on a
basic structure. By de�ning measures of dissimilarity on
tree objects and grouping together similar trees, this pa-
per proposes a method for making sense of this \forest"
of trees.

The data of Wolberg and Managasarian (1990) pro-
vides an illustration of the problem of multiple trees.
The goal is to classify breast tumors as malignant or
benign. Nine cellular characteristics, all measured on a
1-10 scale, are available as predictors. Additional de-
tail is provided in section 4, and Chipman, George, and
McCulloch (1998). Bootstrap (Tibshirani and Knight
1995) and Bayesian (Chipman et. al. 1998) tree search
algorithms identi�ed many promising trees; four distinct
trees from this forest are displayed in Figure 1. Major-
ity classes are indicated by \B" and \M" in terminal
nodes, and misclassi�cation rates are given below ter-
minal nodes. All interior nodes have a split involving
a single variable that results in two child nodes. Con-
siderable di�erences are discernible in the four models:
the �rst variable split upon is di�erent in each tree, and
tree 6 splits �rst on X3 while tree 1 does not use this
variable.

Over 100 other trees were also identi�ed that �t the
data well. How were these four selected as \interest-
ing"? Until recently, common practice has been to pro-
duce plots like those in Figure 1 for a number of trees
with good �t, and identify common structure by exam-
ining the pictures. A more automatic and quantitative
approach is proposed here, in which trees are clustered
according to several metrics.

In section 2, several methods for producing a forest of
trees are reviewed. Section 3 discusses several measures
of dissimilarity for trees, and in section 4 an examples
is given to illustrate how these metrics may be used to
cluster trees.

2 Methods for generating trees

In many applications, there may be many di�erent trees
that can explain the same data well. Finding such trees is
a challenging problem, and one that is not satisfactorily
addressed by the commonly used \greedy" algorithm (ie
forward stepwise search). At each step in this algorithm,
every possible split at every terminal node is considered,

and the node, variable and split rule which maximize
homogeneity of the two resultant children is chosen. The
algorithm is only locally optimal, as splits are chosen to
maximize homogeneity at the next step only.

Many improvements to this algorithm involve either
manipulation of the training data or modi�cation of the
search method. Two approaches from each group are
discussed below.

Breiman (1996) and Tibshirani and Knight (1995)
propose random manipulation of the training data via
the bootstrap (called \bagging" and \bumping" respec-
tively). A large number of pseudo datasets are gener-
ated by resampling the original observations with re-
placement. When a greedy search is applied to each
pseudo dataset, di�erent trees result, some describing
the original data better than a greedy tree grown to the
original data. By perturbing the data, the greedy search
identi�es di�erent trees, some of which may be close to
a global or local maxima.

Freund and Schapire (1996) propose an algorithm
(called \boosting") in which the data are iteratively
reweighted instead of randomly resampled. The algo-
rithm alternates between �tting a tree (with greedy
search) and reweighting the data. The weights are adap-
tively chosen, with more weight given to observations
that the tree models poorly. Again, a forest of trees re-
sult. Quinlan (1996) describes the application of boost-
ing and bagging to trees.

Breiman (1996) and Freund and Schapire (1996) pro-
duce predictions for new cases by using averages of all
models identi�ed. All interpretability of the resultant
model is lost, since a mixture of trees is no longer a tree.
We follow more the approach of Tibshirani and Knight
(1995), who use such methods to generate trees, from
which one (or more) good trees are selected.

The second group of algorithms introduce a stochas-
tic element to the search rather than manipulating the
data. Chipman et. al. (1998) and Denison, Mallick and
Smith (1998) develop stochastic searches via Markov
chain Monte Carlo (MCMC) methods for Bayesian com-
putation. Rather than greedily growing and then prun-
ing a tree, these algorithms employ a number of move
types to traverse the space of tree models. Move types
include grow and prune steps, and a \change" step in
which the rule at an interior node is changed. Chipman
et. al. also propose a \swap" step in which the rules
of a parent and child node are interchanged. In the al-
gorithm, one of the four steps is utilized to generate a
candidate tree by making a small random change to the
current tree. The algorithm then either jumps to the
new tree or remains at the current tree, depending on
the ratio of posterior probabilities and transition proba-
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Tree 1

x2<4.5
x2>4.5

x5<2.5
x5>2.5

x2<3.5
x2>3.5

x4<4.5
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B

2/7

B
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M
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B
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M
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M
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M

Tree 2

x1<8.5
x1>8.5
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x2>4.5

x3<2.5
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x5<3.5
x5>3.5

0/382
B

4/17
B
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B

2/7
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M

3/115
M
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M

Tree 6
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x3>2.5

x5<1.5
x5>1.5

0/353

B

x1<5.5
x1>5.5

2/44

B

0/7

M
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x4<3.5
x4>3.5

0/36

B

2/7

M

8/62

M

3/174

M

Tree 8

x5<2.5
x5>2.5

x2<3.5
x2>3.5

x4<4.5
x4>4.5

0/401

B

2/7

B

2/24

M

x1<6.5
x1>6.5

x3<2.5
x3>2.5

3/28

B

x5<5.5
x5>5.5

6/20

M

4/71

M

1/132

M

Figure 1: Four trees describing the breast cancer data. Trees 1,2,8 were identi�ed by the Bayesian search, and 6 by
bumping.
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bilities between the current and candidate trees. Details
of this Metropolis-Hastings algorithm are given in Chip-
man et. al. (1998).

Lutsko and Kuijpers (1994) develop a stochastic
search algorithm based on simulated annealing. As with
the Bayesian approaches, candidate trees are generated
(using similar steps), and the resultant tree is either
accepted or rejected. As the algorithm progresses, a
temperature parameter is gradually decreased, making
the algorithm less likely to jump to a candidate tree.
Roughly speaking, the MCMC approach can be thought
of as simulated annealing with a constant temperature
(Geyer and Thompson, 1995).

3 Tree Metrics

The approach of the paper is to think of each tree as
a point in a complex high-dimensional space, and clus-
ter the trees according to some measure of proximity.
Obviously, this space is much richer and more compli-
cated than Euclidean space, and distances between trees
can be measured in a number of fashions. To facili-
tate development of metrics, note that a tree can be
identi�ed by a �nite set of parameters, and these pa-
rameters can be broadly divided in two groups: the
tree itself and the parametric models in each termi-
nal node. Referring to Figure 1, the tree parameters
would include the splitting rules (X5 < 2:5; X2 < 3:5,
etc) and the topology of the tree (the top node has
two children, both of which are interior nodes, etc).
The parametric model in each terminal node would be
the probability of belonging to each response class (e.g.
P(benign)=1/132, P(malignant)=131/132 for the right-
most terminal node). Metrics may be de�ned on either
the tree or the terminal node parameters, or perhaps
both. Below we propose three di�erent metrics which
capture di�erent aspects of the tree.

Let T1; T2 be two trees with b1 and b2 terminal nodes.
They have been trained using the same n observations
(yi;xi); i = 1; : : : ; n.

For each observation yi we have an associated �tted
value ŷij for tree j. The �tted value could be simply
a mean or a class label. For a given tree and sample
data with continuous response, the �tted value would
be the average of all observations in that node. With
a categorical response, the estimated class label for a
node would be the class which had the highest sample
proportion (assuming equal misclassi�cation costs). The
�tted values of the two trees can be used in a �t metric:

d(T1; T2) =
1

n

nX
i=1

m(ŷi1; ŷi2); (1)

where m is a metric on the �tted values. For regression
trees with a continuous response, natural choices would
be

m(y1; y2) = (y1 � y2)
2 (2)

orm(y1; y2) = jy1�y2j. For classi�cation trees, ŷij might
be the estimated class for observation yi, in which case
we could compare classi�cations by

m(y1; y2) =

�
1 if y1 = y2
0 otherwise

: (3)

Metrics on the estimated class probabilities(p̂1j; : : : ; p̂cj);
j = 1; 2 (for c response classes) are also possible. A natu-
ral choice would be the Kullback-Leibler distance. Note
that this and (2) have strong connections with likelihood
functions for multinomial and normal data.

Rather than using the �tted values, a metric could
be de�ned on the manner in which trees partition the
predictor space. Trees which are very similar will place
the same observations together and separate the same
observations. Andrews (personal communication) sug-
gests the following metric. Let I1(i; k) be 1 if T1 places
observations i and k in the same node and 0 otherwise.
For a partition metric, we look at di�erences between I

for the two trees:

d(T1; T2) =

P
i>k jI1(i; k)� I2(i; k)j�

n

2

� : (4)

The factor
�
n

2

�
scales the metric to the range (0,1) with

0 indicating perfect agreement. A pair of observations
contributes a positive amount to the distance only if one
tree places the observations together and the other tree
places them apart. The summation may be more e�-
ciently calculated by noting that the argument will be
identical for all observations that belong to the same ter-
minal nodes. Thus a table of frequencies for nodes in T1
and T2 may be used to calculate (4).

Neither of these metrics account for the topology of
the tree - they only use the observed responses and the
partition de�ned by the terminal nodes. Shannon and
Banks (1998) propose a tree metric which accounts for
the manner in which the tree is constructed. This met-
ric compares rules at nodes in the same position in the
two trees. That is, if two plots are constructed on trans-
parent paper so that nodes in the same position overlap
and the plots are held up to the light, the metric counts
the number of nodes at which the splitting rules are dis-
crepant. The distance between trees is then a weighted
sum of the discrepancies at each location:

d(T1; T2) =
X

r2nodes(T1;T2)

�rm(rule(T1; r); rule(T2; r)) (5)
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The summation is over all node positions r which are
nonterminal in at least one tree. The metricm compares
the rules at two nodes; Shannon and Banks take m to be
1 whenever the same variable is used (no matter what
splitting rule is used within a variable), and 0 otherwise.
Choosing all weights �r = 1 yields a count of the number
of nodes at which the rules di�er. If a node at a given
location is nonterminal in one tree and either terminal or
does not exist in the other tree, the nodes are considered
di�erent and are counted in (5).

4 An Example

In this section we use the breast cancer data (discussed
briey in the introduction) to illustrate an approach that
may be used either interactively or in an automated fash-
ion. Although illustrated with a speci�c example, the
techniques used are applicable in general. In section
4.1, the data are described, and bumping and MCMC
methods are used to generate a forest of trees. Mul-
tidimensional scaling is used in section 4.2 to visualize
the distances between trees and compare the diversity
of trees produced by bumping and Bayes methods. In
section 4.3 we present the main part of our approach,
in which a few representative trees are chosen from the
forest. By considering trees one at a time, starting from
the best �tting tree, we are able to characterize a forest
as unimodal (good trees all similar) or multimodal (good
trees form distinct clusters). A new graphic, the added
tree plot is introduced to determine how many good trees
are needed to cover the forest.

4.1 Tree generation

We now describe the data and the manner in which the
forest was generated. The goal of the study is to classify
breast tumors as benign or malignant so the response is
binary. The predictor variables (listed in Table 1) consist
of nine cellular characteristics each of which is measured
on a 1-10 scale. Based on some preliminary analysis we
used just �ve of the nine. Thus, each rule for splitting
the observations in a particular node is of the form xi � c

or xi > c where c is one of the values 1.5,2.5,...9.5 and
i refers to one of the �ve predictors. Figure 1 displays
four di�erent trees that we have found to capture the
pattern in the data. Note that the trees are di�erent.
For example, all four use a di�erent variable to split on
at the top node. How did we �nd these trees and how
are they representative of the tree space?

Our �rst step was to generate a forest. Our goal was
to obtain a set of trees that represent the variety of plau-
sible tree models. We used both bumping and Bayesian

Variable Code
Clump Thickness X1

Uniformity of Cell Size X2

Uniformity of Cell Shape X3

Marginal Adhesion
Single Epithelial Cell Size X4

Bare Nuclei X5

Bland Chromatin
Normal Nucleoli
Mitoses

Table 1: Variable names, breast cancer data. Variables
used in this example are labeled X1 : : :X5.

stochastic search to �nd trees. An initial cross-validation
analysis suggested that good trees should have between
5 and 10 bottom nodes. We implemented the bootstrap
approach by resampling 250 times. For each resampled
dataset, three trees of size 5, 6, and 7 are selected with
cost complexity pruning. From the 750 trees produced
we selected the best 20 trees out of those having 5 bottom
nodes, the best 20 having 6, and the best 20 having 7,
giving a total of 60 trees. We implemented the Bayesian
search algorithm by restarting the chain 20 times. Each
chain was run for 5000 iterations. From each of the 20
runs we kept the best tree found with 5 bottom nodes,
the best having 6, and the best having 7 for a total of 60
trees. The \best" tree was de�ned to be the one having
the largest integrated log likelihood (see Chipman et. al.
1998). Of the 60 trees kept we had 9 duplicates so 51
di�erent tree were actually found. Combining these 51
with the 60 bootstrap trees we obtained 111 trees. All
pairwise distances between trees were calculated using
metrics (1), (4), (5). For �t metric (1), misclassi�cation
distance (3) was used.

4.2 Visualizing the forest

We would like to \see" our forest of 111 trees in the
tree space. Multidimensional scaling (MDS) produces
a two-dimensional scatterplot in which each tree is rep-
resented by a point. The points are arranged so that
the Euclidean distances between points are as close as
possible to the original distances between trees. Many
multivariate analysis texts discuss MDS; see for example
Johnson and Wichern (1992).

Figure 2 presents MDS plots for the �t metric and the
tree metric. Points corresponding to trees found by the
Bayesian search are plotted with an \x" and trees found
by the bootstrap are plotted with an \o". An immediate
and interesting insight provided by the clustering of the
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Figure 2: MDS plots for the breast cancer example. Fit
(top plot) and tree (bottom plot) metrics are presented.

x's and o's is that the Bayes and bootstrap approaches
have explored di�erent parts of the tree space. For ex-
ample in the tree metric plot there is a group of Bayes
trees on the right hand side of the plot. Of course, the

bootstrap approach may have found trees of this type if
more resampling was done.

4.3 Picking representative trees

Our hope is that these 111 trees cover the tree space in
that any \good tree" is reasonably close to one of the
111. The question now is: which of the 111 trees should
be examined? A basic goal is to determine if there are
di�erent kinds of trees that seem to �t the data as op-
posed to all good trees being similar. In Bayesian termi-
nology, we want to know if the posterior is multi-modal.
We want to �nd a few trees which �t well and represent
any variation in the kinds of trees that �t well. In this
example the response is binary so we used (integrated)
log likelihood as a criterion for good �t. The higher the
log likelihood, the better the tree.

Figure 3 again plots the 111 trees using the MDS coor-
dinates for the tree metric. The 13 trees with largest log
likelihood are successively numbered (1 being the high-
est log likelihood). Throughout this example, we refer to
trees by the rank of their corresponding log-likelihoods
(i.e. 1-13). Thus, tree 1 is the \best tree" (as measured
by log likelihood). In this example the forest is clearly
multimodal. Four possible clusters of similar trees that
�t well are given by f1,3,5,7,11g, f2,4,9g, f6,13g, and
f8,10,12g.

By highlighting the most likely trees, the clusters
come into sharper focus. Trees 1 and 2 (the two best
trees) fall in di�erent clusters so that we have found two
di�erent kinds of trees that both potentially �t the data.
In order to represent the tree space with a small num-
ber of trees we choose a representative tree from each
cluster. We chose trees 1, 2, 6, and 8 since they have
the highest log likelihood among nearby trees. Recall
that these four trees are displayed in Figure 1. As noted
above, these trees are quite di�erent. They may mean
di�erent things to the investigator with subject matter
knowledge.

As we move down the list of trees from best to worst,
we look to see if a new tree is di�erent from the ones
before. For example, in �gure 3 we see that when we get
to the eighth tree we have a tree which is in a di�erent
part of the tree space than the �rst seven. This will
happen when the forest of trees is multimodal in that
there are clusters of trees in di�erent parts of the tree
space that �t the data well. If we had a three dimensional
plot of the log likelihood vs the two MDS coordinates
we would see local maxima. As we \lower the bar", that
is go down the list of trees ordered by log likelihood,
di�erent clusters corresponding to di�erent local maxima
become apparent. In contrast suppose there was really
just one kind of tree that �t well. Then the forest would
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Figure 3: MDS plot of 111 trees using tree metric, with
the most likely trees identi�ed.

be unimodal. As we lower the bar, the new trees would
spread out from the location of the best tree.

The core technique used above may be abstracted as
follows:

1. Starting with the best tree, add trees one at a time
until the space of trees is adequately represented.
That is \lower the bar" until no new trees add di-
versity.

2. Cluster the trees identi�ed in (1) and pick a rep-
resentative tree from each cluster (either the most
likely or most central).

While the MDS plot enables clear identi�cation of
clusters, it may distort the actual tree distances. As
a useful alternative, we introduce the added tree plot,
which uses the original distances and implements steps
(1) and (2) above. The added tree plot in Figure 4 uses
the original tree distances to assess the e�ect of adding
new trees one at a time from left to right. For each in-
dex value on the horizontal axis, all distances between
the new tree and all better trees are plotted on the ver-
tical axis. For example, in the tree metric, the second

best tree has a distance of 8 from the best tree (and is
consequently quite di�erent). The third best tree in this
metric is quite close to one of the two best trees, and
distant from the other. The vertical scale (for distance)
in the added tree plot has range 0 to the maximum dis-
tance among all 111 trees, allowing us to see how diverse
the best trees are relative to the whole forest. We can
see that some distances are not accurately represented in
the MDS plot. For example, in Figure 4 (with the tree
metric), the nearest tree to 4 (out of 1-3) has a distance
of 5, while in the MDS plot 2 and 4 nearly overlap.

These plots may be used to decide how many trees to
include, i.e. how far to lower the bar. A tree should be
added if it is far from other trees. In the added tree plot,
this usually corresponds to a large minimum distance,
meaning that no other tree is close. In the case of the
tree metric, tree 7 is redundant, since it has zero distance
to another tree. Tree 8 is di�erent from 1-7, since its
closest neighbour is a distance of 8. Based on only the
added tree plot for the tree metric, using either the top
8 or the top 11 trees seems most reasonable. This agrees
with the MDS plot, as we see that both plots identify
the introduction of trees belonging to new clusters. Our
choice of 13 trees perhaps includes too many, but the
much worse error would be to include too few trees.

In some cases interesting trees may have large max-
imum distances, rather than large minimum distances.
This means a tree is farther away from another tree than
any other tree yet added. Such a tree extends the bound-
ary of the forest, and the only trees which are close are
also near the boundary.

The strategy in the previous two paragraphs may be
extended to simultaneously look at several metrics. To
select a cuto�, we would identify the largest index for
which all successive trees add little diversity in any in-
dex. In this case, either eight or 11 trees is probably
su�cient, although the 16th tree is not close to others
in the partition metric.

Disagreements between metrics on individual trees
can be quite informative. If a tree is similar to oth-
ers in one metric and di�erent in another, then only
certain aspects of the tree are unique. Tree 8 is quite
di�erent from 1-7 in the tree metric, but not so di�erent
from these trees in the partition metric. This indicates
that perhaps di�erent rules are being used (or perhaps
a di�erent con�guration of the same rules) to arrive at a
partition that is not very di�erent from the other trees.

Notice that in the added tree plot for the �t metric,
none of the 20 trees considered comes close to the max-
imum distance of all 111 trees. Put another way, the
�t metric does not discriminate among the most likely
trees as much as the other two metrics. The fact that we
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Figure 4: Added tree plots for the three metrics. For each index value, distances between the new tree and all better
trees are plotted on the vertical axis. The vertical axes have maximum distance equal to the largest distance among
all 111 trees.
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Figure 5: Dendogram for divisive hierarchical clustering
of 11 trees with the tree metric.

are ordering trees by log likelihood implies that all trees
with high log likelihood will probably be close in the �t
metric. For this reason we feel that the �t metric is the
least informative of the three considered.

Now that a set of good (and diverse) trees have been
identi�ed, they need to be clustered. The informal clus-
tering based on MDS is probably su�cient for this ex-
ample, since the clusters are so distinct. An alterna-
tive would be an automatic clustering procedure. Fig-
ure 5 shows the result of divisive hierarchical clustering
(Kaufman and Rousseeuw 1990, implemented as diana
in Splus) applied to the 13 selected trees. We see that
the clustering basically identi�es the same groups of trees
which were visually evident in the plots based on mul-
tidimensional scaling. In this case the more automatic
approach based on clustering gives the same results we
got graphically using MDS.

5 Discussion

While the three metrics considered here are all useful,
each has limitations. The �t metric lacks discriminative
power, since all trees one considers will have reasonable
�t to the data. If the same rules appear in di�erent
order, the tree metric will indicate that the trees are
very di�erent. Modi�cations of these metrics and other
new metrics might address some of these issues. For

example, before applying the tree metric, one might pre-
process trees so that isomorphic trees are reduced to a
common structure. Other metrics are also possible: One
might construct a vector of summaries for each tree (eg
size, bushiness, degree of use of each variable, etc.) and
apply a metric to suitably normalized vectors. Another
possibility is to regard each node as a sequence of rules
combined by \ands", reorganize the rules to a common
format, and apply a metric to the rules.

Additional techniques for clustering trees using these
metrics are possible. The partition metric could be de-
composed into a contribution for each observation, giv-
ing a measure of how \contentious" an individual obser-
vation is - that is, if two trees are di�erent, what nodes
do they disagree on most?

Speci�c to MCMC, these metrics may be used to aid
in the running of the chain, and could provide useful
(Bayesian) summaries. As Chipman et. al. (1998) dis-
cuss, running many chains is the most e�ective means
to explore the space of trees. Metrics could be used
to help decide how many chains to run and for how
long. Using the metrics, we can examine the diversity
of trees produced by each run (in a manner similar to
the Bayes/bump comparison of Figure 5), and identify
when a speci�c run is no longer exploring new territory.
A more radical use of metrics might be to incorporate
them in the construction of new candidate trees. If two
distant trees have been identi�ed (perhaps originating
in di�erent runs), then one might construct a chain that
moved from one tree to the other, looking for interesting
trees that exist between the two modes. Another ap-
plication of clustering might be to calculate the poste-
rior mass associated with clusters. Although calculating
posterior probabilities of individual trees is problematic
(Chipman et. al. 1998), these di�culties are alleviated
by looking at mass associated with groups or neighbour-
hoods of trees.

Papers by other authors consider related issues. Shan-
non (1998) looks at predictive accuracy of trees identi�ed
as interesting using similarmetrics. Hawkins andMusser
(1998) use a forest of trees to learn what variables tend
to occur together or apart in individual trees. Shannon
and Banks (1998) propose the tree metric and use it to
construct a single tree that is central to a forest. An
important distinction is that they do not rank the trees
according to their �t, a central element of our approach.

MCMC and other stochastic methods are being used
increasingly to explore large and complicated model
spaces. In situations where numerous models are in-
dexed by a goodness criterion and a few representative
models must be selected, the added tree plot of section
4.3 may have general application. In such general cases,
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we propose that the plot be called an added model plot.
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