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Abstract

Deterministic computer simulations are often used as replacement for com-
plex physical experiments. Although less expensive than physical experi-
mentation, computer codes can still be time-consuming to run. An effective
strategy for exploring the response surface of the deterministic simulator is
the use of an approximation to the computer code, such as a Gaussian pro-
cess (GP) model, coupled with a sequential sampling strategy for choosing
design points that can be used to build the GP model. The ultimate goal
of such studies is often the estimation of specific features of interest of the
simulator output, such as the maximum, minimum, or a level set (contour).
Before approximating such features with the GP model, sufficient runs of the
computer simulator must be completed.

Sequential designs with an expected improvement (EI) design criterion can
yield good estimates of the features with minimal number of runs. The chal-
lenge is that the expected improvement function itself is often multimodal
and difficult to maximize. We develop branch and bound algorithms for
efficiently maximizing the EI function in specific problems, including the si-
multaneous estimation of a minimum and a maximum, and in the estimation
of a contour. These branch and bound algorithms outperform other opti-
mization strategies such as genetic algorithms, and can lead to significantly
more accurate estimation of the features of interest.
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1. Introduction

Computer experiments are often employed to simulate complex systems,
but realistic computer simulators of physical phenomena can be time con-
suming to evaluate. In such cases it is desirable to perform the experiment
as efficiently as possible. One popular approach designed for this purpose
is sequential experimental design (Jones, 2001) whereby an initial design is
simulated and a surrogate model is fit to the output, often using a Gaussian
Spatial Process (Sacks et al., 1989). The surrogate provides estimates at
all input combinations (sampled and unsampled) with accompanying vari-
ance estimates and is used, along with a suitable ‘infill criterion’, to choose
subsequent trials.

Scientists are often interested in specific features of the simulator, such
as the maximum, the minimum, level set(s), etc. In each case, the follow-up
trial in the sequential design is selected so as to give the greatest improvement
to the estimate(s) of these feature(s) of interest. A popular approach is to
choose this new trial by maximizing a merit-based infill criterion. Many
criteria have been proposed (e.g., Jones et al. (1998), Villemonteix et al.
(2006), Forrester and Jones (2008)) and one popular choice is the ‘expected
improvement’. This criteria has been shown to be efficient if the initial design
is not too sparse or deceptive (Forrester and Jones, 2008).

The form of the improvement function varies with the features of interest,
but in any case represents a balance between choosing points that exhibit
local optimality (greedy search, new trials close to predicted feature of inter-
est), and points with high uncertainty (global search, new trials away from
previously sampled points) (Papalambros et al., 2002). Finding the next de-
sign point (the point that maximizes the EI function) is necessary in order
to ensure the estimation of features of interest in the smallest number of
simulator runs. The fitted surrogate and hence the EI function changes after
adding every new point to the design, and furthermore the EI function is
often multimodal. Consequently, this is a difficult optimization problem.

The main focus of this paper is to develop branch and bound algo-
rithms for maximizing expected improvement functions for two particular
features of interest; contours, and the simultaneous estimation of maximum
and minimum. The most challenging aspect of this algorithm is construct-
ing the bounds on the objective function (expected improvement). Branch
and bound algorithms have been implemented for finding the minimum of a
function (Jones et al., 1998), and expected improvement criteria have been
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developed for the minimum (Jones et al., 1998), and contours (Ranjan et al.,
2008). Our main contribution are in (a) generalizing the expected improve-
ment criterion for simultaneous estimation of the maximum and minimum,
and (b) developing branch and bound algorithms for maximizing expected
improvement for contours, and for simultaneous maximum/minimum estima-
tion. Ranjan et al. (2008) maximized their expected improvement function
for estimating contours using a genetic algorithm. The branch and bound
algorithm developed here outperforms their optimization by locating level
sets using fewer simulator runs.

This paper is organized as follows: Section 2 gives an overview of the
Gaussian process model, the expected improvement criterion and a generic
branch and bound algorithm that will be used to maximize the expected
improvement over candidate input points. In Section 3 we propose bounds
on the expected improvement for estimating contours and simultaneous esti-
mation of the global maximum and minimum. Section 4 presents simulation
results comparing our branch and bound with a genetic algorithm similar
to that of Ranjan et al. (2008) for different test functions. We present our
conclusions and outline possible future work in Section 5.

2. Review - surrogate model, global optimization

2.1. Gaussian Process Model

Let yi represent the univariate response from the computer simulator, and
X = (x1,x2, ...,xn)′ be the matrix of input vectors x′i = (xi1, xi2, ..., xid) used
to generate the respective outputs, with y(X) = (y1, y2, ..., yn)′. Without loss
of generality, let the input space be the unit hypercube χ = [0, 1]d. Following
Sacks et al. (1989) we model the output y(xi) as

y(xi) = µ+ z(xi); i = 1, ..., n, (1)

where µ is the overall mean, and {z(x), x ∈ χ} is a Gaussian spatial pro-
cess with mean 0, variance σ2

z and corr(z(xi), z(xj)) = Rij. The correlation
matrix R is a function of the hyper-parameters θ = (θ1, . . . , θd). In general,
y(X) has multivariate normal distribution, y(X) ∼ Nn(1nµ, σ

2
zR), where the

parameters Ω = (θ1, ..., θd;µ, σ
2
z) are estimated by maximizing the likelihood.

The mean and variance parameters have closed form estimates given by

µ̂ = (1′nR
−11n)−11′nR

−1y and σ̂2
z =

(y − 1nµ̂)′R−1(y − 1nµ̂)

n
, (2)
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whereas the hyper-parameters θ = (θ1, ..., θd) are estimated by maximizing
the profile likelihood.

The best linear unbiased predictor (BLUP) at x∗, ŷ(x∗), and the associ-
ated mean squared error (MSE) s2(x∗) are given by

ŷ(x∗) = µ̂+ r′R−1(y − 1nµ̂), (3)

s2(x∗) = σ2
z

(
1− r′R−1r +

(1− 1′nR
−1r)2

1′nR
−11n

)
, (4)

where r = (r1(x
∗), ..., rn(x∗))′ and ri(x

∗) = corr(z(x∗), z(xi)). In practice,
we use R(θ̂), r(θ̂) and σ̂2

z instead of R, r and σ2
z in (3) and (4). There are

several choices for the correlation structure, for instance, power exponential
correlation and Matérn correlation (see Stein (1999); Santner et al. (2003)
for details). The choice of correlation is not crucial to the algorithms and
methodologies developed here, and thus we omit the details. In this paper
we use the squared exponential product correlation function.

It turns out that if the design points are close together in the input space
the correlation matrix R can sometimes be near-singular which results in
unstable computation. A popular approach to overcome this problem is to
introduce a small nugget 0 < δ < 1 and approximate the ill-conditioned R−1

with a well-conditioned (R+ δI)−1, where I is the n×n identity matrix. In-
stead, one can use more sophisticated methods to overcome near-singularity
(see Ranjan et al. (2010) for details). We follow the popular approach and
use a small nugget in the GP models for the examples considered here.

2.2. Sequential design using EI criterion

For expensive computer models the total number of simulator runs is
limited; and thus the choice of design points is crucial for estimating certain
pre-specified features or approximating the underlying process. If we are
interested in only certain features (e.g., global maxima, contours, and so on)
of the process, a popular approach is to use a sequential sampling strategy.
The key steps of such a sampling scheme are summarized as follows:

1. Choose an initial design {x1, ..., xn0}.
2. Run the simulator, f , for these design settings to obtain {y1, ..., yn0},

where yi = f(xi). Set n = n0.

3. Fit a surrogate to the data {(xi, yi), i = 1, ..., n} (we use the Gaussian
process model).
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4. Choose a new trial xnew that leads to improvement in the estimate of
the feature of interest.

5. Run the simulator for the new trial location and update the data xn+1 =
xnew, yn+1 = f(xnew) and n = n+ 1.

6. Repeat 3-5 until n exceeds a predetermined budget.

Developing feature specific criteria for selecting new trials has gained con-
siderable attention in the computer experiment community. For instance,
Jones et al. (1998) proposed an expected improvement (EI) criterion for
estimating the global minimum of an expensive computer simulator. Let
I(x) denote the improvement function for estimating a particular feature
of interest. Then, the proposed criterion in Jones et al. (1998) is E[I1(x)],
where I1(x) = max{fmin − y(x), 0}, fmin is the current best estimate of
the function minimum, and the expectation is taken over the distribution of
y(x) ∼ N(ŷ(x), s2(x)). That is, the new trial in Step 4 is the maximizer of

E[I1(x)] = s(x)φ(u) + (fmin − ŷ(x))Φ(u), (5)

where u = (fmin − ŷ(x))/s(x), and φ(·) and Φ(·) denote standard normal
pdf and cdf respectively. One of the most attractive characteristics of the EI
criterion is that it exhibits a balance between ‘global’ and ‘local’ search. The
first term in (5) supports global search, and the second term, local search.

Since the main objective of performing a good design is to attain (or at
least reach a good approximation of) the global minimum in as few simula-
tor runs as possible, efficient optimization of the EI function becomes very
important. The EI functions are often multimodal and the location, number
and heights of these peaks change after adding every new trial. Jones et al.
(1998) developed a branch and bound (BNB) algorithm for optimizing the
EI function (5), which we review briefly in the next section.

2.3. Branch and bound algorithm: review for finding a global minimum

BNB algorithms are often used for global optimization of non-convex
functions (Lawler and Wood, 1966; Moore, 1991). The BNB algorithm pre-
sented here finds the global minimum of a real-valued function g. In our
case, g(x) = −E[I(x)] is defined on the d-dimensional hypercube Qinit =
χ = [0, 1]d for a specific feature of interest.

There are three key components of a BNB algorithm - (i) branching (ii)
bounding and (iii) pruning. The branching component uses a splitting pro-
cedure that, given a rectangle Q ⊂ Qinit, returns QI and QII such that
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QI ∩ QII = φ (null) and QI ∪ QII = Q. The splitting occurs along the
longest edge of Q (if there is a tie, one is chosen randomly). Bounding is
the second component. Bounding the objective function g, requires finding
the lower and upper bounds, Ψlb and Ψub, of the minimum value of g. Let
Ψmin(Q) = minx∈Q g(x) for every Q ⊂ Qinit, then Ψlb and Ψub must satisfy

R1 : Ψlb(Q) ≤ Ψmin(Q) ≤ Ψub(Q)

R2 : ∀ ε > 0 ∃ δ > 0 such that for all Q ⊆ Qinit, (6)

|Q| ≤ δ =⇒ Ψub(Q)−Ψlb(Q) ≤ ε.

As in Balakrishnan et al. (1991), |Q| is the length of the longest edge of
rectangle Q. Although BNB algorithms guarantee the global minimum of
g with a pre-specified tolerance ε, the bounding functions Ψlb and Ψub are
objective function specific and often nontrivial to derive. This is the most
challenging part of a BNB algorithm. Appropriate lower and upper bounds
can be constructed for maximizing the EI criteria for a few specific process
features of interest, and this is the main contribution of the paper. The third
component of the BNB algorithm is pruning, in which the algorithm removes
rectangles Q from the set of all rectangles L, that have lower bound greater
than the upper bound of some other rectangle in L. In the BNB algorithm
outlined below, individual rectangles are represented by Q’s and lists of rect-
angles are represented by L’s:

1 k = 0 (initialize counter)
2 L0 = {Qinit} (initialize rectangle list)
3 L0 = Ψlb{Qinit}
4 U0 = Ψub{Qinit}
5 while Uk − Lk > ε
6 Pick Q ∈ Lk : Ψlb(Q) = Lk
7 Split Q along one of its longest edges into QI andQII
8 Lk+1 := (Lk\{Q}) ∪ {QI ,QII} (remove Q, replace with

QI and QII to get Lk+1)
9 Lk+1 := minQ∈Lk+1

Ψlb(Q)
10 Uk+1 := minQ∈Lk+1

Ψub(Q)
11 Lk+1 := Lk+1 \ {Q ∈ Lk+1 : Ψlb(Q) > Uk+1}
12 k = k + 1
13 end
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In this algorithm, k is the iteration index, Lk+1 is the list of hyper-rectangles,
(Lk+1, Uk+1) are the smallest lower and upper bounds for Ψmin(Qinit) (in our
case minx∈χ−E[I(x)]) after k+1 iterations, and ε is the desired precision and
is fixed beforehand. Steps 6-8 correspond to branching, Steps 9-10 bounding,
and Step 11 represents pruning of the hyper-rectangles.

The EI function for finding the global minimum of the simulator, E[I1(x)],
is a function of the input location x via the predicted response ŷ(x), the
associated uncertainty s2(x) at x and the current best estimate of the global
minimum fmin (in general the estimate of the feature of interest). Jones et al.
(1998) note that E[I1(x)] is monotonic with respect to (w.r.t.) ŷ(x) and s(x).
Let EI1(s(x), ŷ(x)) denote E[I1(x)] for all x ∈ χ. Taking partial derivatives
of (5) w.r.t. ŷ(x) and s(x) give

∂EI1
∂s(x)

= φ (u) and
∂EI1
∂ŷ(x)

= −Φ (u) .

The partial derivatives ∂EI1/∂s(x) ≥ 0 and ∂EI1/∂ŷ(x) ≤ 0 for all x ∈ χ.
Hence if ŷ(x) and s(x) can be bounded by (ŷlb(Q), ŷub(Q)) and (slb(Q), sub(Q))
respectively over a hyper-rectangle Q ∈ L, then for every x ∈ Q, the lower
and upper bounds E[I1(x)]ub = Ψlb(Q) and E[I1(x)]lb = Ψub(Q) are

E[I1(x)]lb = EI1(slb(Q), ŷub(Q)),

E[I1(x)]ub = EI1(sub(Q), ŷlb(Q)),

where ŷlb(Q), ŷub(Q), slb(Q) and sub(Q) are the lower and upper bounds on
ŷ(x) and s(x) over Q. These bounds are needed in Steps 6-11. In practice
s(x) is replaced by its predicted value ŝ(x). This approach of bounding the
EI function is efficient, as bounding s(x) and ŷ(x) is relatively easier (see
Jones et al. (1998) for details).

3. BNB Algorithms for New EI Criteria

In this section we first propose a generalization of the expected improve-
ment criterion developed by Jones et al. (1998) for simultaneously estimating
the maximum and minimum of an expensive deterministic computer simula-
tor. Next we develop a BNB algorithm for maximizing this new EI criterion.
We also propose a modification in the EI criterion developed by Ranjan et al.
(2008) for estimating a pre-specified contour. This modification facilitates
the development of a BNB algorithm for maximizing the modified EI crite-
rion, and still maintains the global versus local search trade-off.
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3.1. EI criterion for maximum and minimum

We propose an improvement function for simultaneous estimation of the
global maximum and minimum. This feature could be of specific interest,
for instance, if one wishes to identify best-case and worst-case scenarios in a
global climate change model, or maximal and minimal projected unemploy-
ment rates in a complex model of the economy. The improvement function
can be written as

I2(x) = max{(y(x)− fmax), (fmin − y(x)), 0}, (7)

where fmax and fmin are current best estimates of the global maximum and
minimum respectively. The corresponding expected improvement criterion is
obtained by taking the expectation of I2(x) with respect to the distribution
of y(x) ∼ N(ŷ(x), s2(x)),

E[I2(x)] = sφ(u1) + (ŷ − fmax)Φ(u1) + sφ(u2) + (fmin − ŷ)Φ(u2), (8)

where u1 = (ŷ − fmax)/s and u2 = (fmin − ŷ)/s. The EI criterion (8) turns
out to be the sum of the two EI criteria for individually estimating the global
maximum and the global minimum. Optimization of (8) favors subsequent
sampling in the neighbourhood of the global maximum if (ŷ − fmax)Φ(u1) is
the dominating term in the sum, the global minimum if (fmin − ŷ)Φ(u2) is
the dominant term, and otherwise in the less explored regions to minimize
overall variability.

As in optimization of the EI criterion (5) for estimating the global min-
imum, a BNB algorithm can be developed for optimizing (8). The most
challenging part, computation of the lower and upper bounds of (8) that
satisfy R1 and R2 in (6) for minimizing g(x) = −E[I2(x)], is accomplished
by monotonicity of E[I2(x)] w.r.t. ŷ(x) and s(x). Let EI2(s(x), ŷ(x)) denote
E[I2(x)] for all x ∈ χ. Then the two partial derivatives of E[I2(x)] are

∂EI2
∂s(x)

= φ (u1) + φ (u2) and
∂EI2
∂ŷ(x)

= Φ (u1)− Φ (u2) .

The partial derivative w.r.t. s(x) is positive for all x ∈ χ, and the partial

derivative w.r.t. ŷ(x) is equal to zero when ŷ(x) = (fmax+fmin)
2

. Moreover, it
is straightforward to show that

∂EI2
∂ŷ(x)

{
≥ 0 if ŷ(x) > (fmax+fmin)

2

≤ 0 if ŷ(x) < (fmax+fmin)
2

.
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Hence E[I2(x)] is monotonic for all x ∈ χ w.r.t. s(x) and piecewise monotonic
w.r.t. ŷ(x). Given the upper and lower bounds on ŷ(x) and s(x) in a given
hyper-rectangle Q ⊂ Qinit, somewhat conservative bounds on E[I2(x)], for
every x ∈ Q, are

E[I2(x)]lb = min{EI2(slb(Q), ŷlb(Q)), EI2(slb(Q), ŷub(Q))},
E[I2(x)]ub = max{EI2(sub(Q), ŷlb(Q)), EI2(sub(Q), ŷub(Q))}.

That is, the upper bound of E[I2(x)] in Q is calculated at sub(Q), and due to
piecewise monotonicity of E[I2(x)], corresponds to ŷ(x) in Q that is closest
to fmin or fmax. Similarly, the lower bound of E[I2(x)] is calculated using
slb(Q) and ŷ(x) in Q that is closest to (fmax + fmin)/2.

These bounds are conservative because the lower and upper bounds of
s(x) and minimizer of |ŷ(x) − (fmax + fmin)/2| may not correspond to the
same point in the input space. The lower bound Ψlb(Q) of minx∈Q(−E[I2(x)])
will be equal to the true minimum of −E[I2(x)] only if the minimizers of s(x)
and |ŷ(x)− (fmax + fmin)/2| are identical. As a result, the hyper-rectangles
in L are pruned at a slower rate.

3.2. BNB algorithm for contour estimation problem

The use of a EI criterion for estimating a contour (level set) of an expen-
sive computer simulator was proposed by Ranjan et al. (2008). The motivat-
ing application involved distinguishing “good” from “bad” performance of the
server in a one-server-two-queue network queuing simulator. The proposed
improvement function for estimating the contour S(a) = {x : y(x) = a} was
I3(x) = ε2(x) − min{(y(x) − a)2, ε2(x)}, where ε(x) = αs(x), for a positive
constant α, defines a neighbourhood around the contour. The expectation
of I(x) w.r.t. y(x) ∼ N(ŷ(x), s2(x)) is given by

E[I3(x)] =
[
ε2(x)− (a− ŷ(x))2

]
[Φ (u1)− Φ (u2)] (9)

− 2(a− ŷ(x))s(x) [φ (u1)− φ (u2)]− s2(x)

∫ u2

u1

w2φ (w) dw,

where u1 = (a − ŷ(x) + ε(x))/s(x), u2 = (a − ŷ(x) − ε(x))/s(x), and φ(·)
and Φ(·) are the standard normal pdf and cdf respectively. Ranjan et al.
(2008) use E[I3(x)] as the EI criterion for selecting additional new trials
in the sequential sampling strategy. Controlling the trade-off between local
and global search has gained attention in the area of computer experiments

9



(e.g., Schonlau, Welch and Jones (1998), Sóbester, Leary, and Keane (2005)).
This motivated us to modify the EI criterion in (9) that will facilitate the
construction of the lower and upper bounds which satisfy R1 and R2 in (6),
and still entertains the global versus local search trade-off.

Note that the third term in (9) represents the total uncertainty in the
ε-neighbourhood of the contour at x, and can be dropped without altering
the important features of the criterion. We propose a modified EI criterion,
obtained by dropping the third term in (9) and using a change of variable
{ŷ(x), s(x)} → {t(x), s(x)}, given by

E[I∗3 (x)] = s2(x)
[
α2 − t2

]
[Φ (t+ α)− Φ (t− α)] (10)

− 2ts2(x) [φ (t+ α)− φ (t− α)] ,

where t = (a − ŷ(x))/s(x). Although the proposed modification slightly
alters the tradeoff between the global and local search (see Section 4.1 for
more details), it allows the partial derivatives of E[I∗3 (x)] to be piecewise
monotone. Furthermore, this facilitates easy construction of lower and upper
bounds in the BNB algorithm for efficient optimization of E[I∗3 (x)].

Let EI∗3 (s(x), t(x)) denote E[I∗3 (x)] for all x ∈ χ. Then, the partial
derivative of E[I∗3 (x)] w.r.t. t = t(x) is

∂EI∗3
∂t

= −2s2(x)t[Φ(t+ α)− Φ(t− α)] + 2αs2(x)t[φ(t+ α) + φ(t− α)]

+ s2(x)(α2 + t2 − 2)[φ(t+ α)− φ(t− α)]. (11)

It turns out that the sign of the partial derivative ∂EI∗3/∂t depends on the
sign of t = (a − ŷ(x))/s(x). Since the normal pdf is symmetric around the
mean (i.e., φ(u) = φ(−u), for all u), the partial derivative ∂EI∗3/∂t = 0 at
t = 0. In general,

∂EI∗3
∂t


≤ 0 if t > 0
= 0 if t = 0
≥ 0 if t < 0

.

Figure 1 presents empirical evidence to suggest piecewise monotonicity of
EI∗3 w.r.t. t(x), however, due to the normal density functions in (11), it is
difficult to prove this result analytically.

There are a few points worth noting. For instance, the height of these
peaks, in Figure 1, increases with s. The magnitude and sign of the derivative
depend on the choice of α (we used α = 2). Interestingly, the nature of the
curves remain the same for α > 1 (approximately).
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Figure 1: Partial derivative of EI∗3 (t(x), s(x)) w.r.t. t(x) evaluated at α = 2.

The partial derivative EI∗3 w.r.t. s(x) is given by

∂EI∗3
∂s(x)

= 2s(x)(α2 − t2)[Φ(t+ α)− Φ(t− α)]

−4ts(x)[φ(t+ α)− φ(t− α)]. (12)

Figure 2 displays the partial derivative ∂EI∗3/∂s(x) as a function of s(x). It
can be seen that the partial derivative ∂EI∗3/∂s(x) is always greater than 0,
empirical evidence suggests that ∂EI∗3/∂s(x) is non-negative. As with the
monotonicity of EI∗3 w.r.t. t(x), the analytical proof is unknown.

As in the simultaneous estimation of the global maximum and minimum
case, bounds on E[I∗3 (x)] for every x ∈ Q are obtained using the bounds on
t(x) and s(x) in the hyper-rectangle Q ∈ L. The bounds are

E[I∗3 (x)]lb = min{EI∗3 (slb(Q), tlb(Q)), EI∗3 (slb(Q), tub(Q))},
E[I∗3 (x)]ub = max{EI∗3 (sub(Q), tlb(Q)), EI∗3 (sub(Q), tub(Q))}.

Because EI∗3 (s(x), t(x)) is an increasing function of s(x), the lower bound of
E[I∗3 (x)] in Q is obtained using slb(Q), and the value of ŷ(x) farthest from
the estimated contour.
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Figure 2: Partial derivative of EI∗3 (t(x), s(x)) w.r.t. s(x) evaluated at α = 2.

Ranjan et al. (2008) used a genetic algorithm for maximizing the expected
improvement criterion (9). We will show in Sections 4.2 and 4.3 that the
proposed BNB algorithm outperforms the implementation of Ranjan et al.
(2008) and can save simulator evaluations.

4. Simulations

This section presents comparison between the proposed branch and bound
algorithm, a genetic algorithm (GA) and a non-sequential (static) design for
maximizing the EI criteria for various test functions. Two approaches are
taken to compare BNB, GA and a static design approach. The first we will
call the “direct comparison”, and was designed to reduce all noise external
to the two optimization algorithms (BNB and GA) so that the EI criterion
values chosen by each method can be directly compared. The second, the
“long run comparison”, demonstrates the average performance of the two
algorithms by comparing the estimated and true features of interest as the
additional new trials are augmented. In both cases, complex test functions
are used for generating computer simulator outputs.

The GA we implemented to maximize the expected improvement function
is described in Algorithm 1 (see Ranjan et al. (2008) for details):
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Algorithm 1 Genetic algorithm for maximizing GP likelihood

for i = 1 to numMultistarts do

Generate initial population Xinit (of size ninit)

Xj = Xinit

for j = 1 to numGenerations do

Mutation: Randomly perturb Xj giving Xjpert

Augmentation: Xjaug = [Xj; Xjpert]

Crossover - Randomly swap elements of Xjaug giving Xjcross

Augmentation: Xjaug = [Xjaug;Xjcross]

Selection - Evaluate fitness for every candidate solution in Xjaug

Retain ninit members with highest fitness

end for

end for

GAs are well-known algorithms that can produce competitive results. In
the GA we used, the magnitude of the mutation was variable and perturbed
each dimension ±(0..5)% of the original value. The initial population was
generated with the random Latin hypercube function lhsdesign in Matlab
7.5.0. Crossover was between randomly selected pairs, in random dimensions.
See Holland (1975) and Mitchell (1996) for more information.

Before we compare the optimization power of the proposed BNB algo-
rithms and the GA, we present results from an empirical study on the trade-
off between local versus global search in EI3 (9) and EI∗3 (10), for estimating
a pre-specified contour.

4.1. Comparison between EI3 and EI∗3
Both EI3 and EI∗3 consist of terms that encourage local and global search.

The most important difference is the balance between the local and the global
searches. Table 1 presents the results when the computer simulator outputs
were generated from the Branin and two-dimensional Levy functions (see
Section 4.3 for details on these test functions). The entries in Table 1 denote
the proportion of additional trials that were chosen in the neighborhood
of a pre-specified contour, i.e., the proportion of new trials that favored
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local search. The results presented here are averaged over 100 realization of
random maximin Latin hypercube designs of size n0 = 20 for initial design.
For each realization, the new trials were chosen by maximizing the two EI
criteria using GA. The contours of interest were y = 45 and y = 70 for
the Branin and Levy functions respectively. This simulation will indicate
whether there are practical differences between the two criteria in terms of
their balance between local and global search.

Table 1: Proportion of additional trials chosen in the neighbourhood of a pre-specified

contour, by EI3 and EI∗3 criteria for estimating pre-specified contours

number of Branin y = 45 Contour Levy 2D y = 70 Contour

points added EI3 EI∗3 EI3 EI∗3

k = 5 0.55 0.66 0.49 0.55

k = 10 0.72 0.80 0.44 0.53

k = 20 0.85 0.89 0.39 0.54

k = 30 0.89 0.93 0.37 0.55

A new point xnew was considered to be in the local neighbourhood of the
contour if f(xnew) was within (40, 50) for the Branin function, and within
(60, 80) for the Levy function. It is clear from Table 1 that more points are
added in the local neighbourhood with the new criterion, most notably in
estimating the Levy contour when k = 30 new points were added.

The practical implications of this simulation are that the new criterion
allocates slightly more points for local search. This is expected as the term
with integral was removed from (9), and it contributes to the global search.
This is a desirable characteristic for an EI criterion if the underlying surface
is relatively smooth. If it is known that the simulator response surface is rel-
atively bumpy, the local and global search terms in (10) could be reweighted
as in Sóbester et al. (2005). This reweighted EI will still enable easy con-
struction of the lower and upper bounds for the branch and bound algorithm.

4.2. Direct comparison

The objective of this simulation is to compare BNB and GA optimization
of the EI criterion for a single step of the sequential design algorithm, starting
from the same initial design.
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To begin with we follow Steps 1-3 of the sequential design strategy out-
lined in Section 2.2 to obtain a fitted surface. The fitted GP model serves
as input for the BNB and GA optimizer. These two methods search for the
maximum of the EI criterion over Qinit = [0, 1]d, and then the estimates
of the maximum EI are compared. The two optimizers BNB and GA use
exactly the same inputs (MLE of the parameters in GP model, initial trials
Xinit, y(Xinit), and the current best estimate of the feature of interest) in this
comparison, and so their output are directly comparable, though subject to
small approximation. The approximation in BNB comes from estimating the
bounds of ŷ(x), ŝ(x) based on points in each rectangle Q ∈ Qinit = [0, 1]d.
For example the upper bound of ŷ(x) in some rectangle Q is estimated by
the maximum observed ŷ(x) for x ∈ Q from the GP model fit. Thus, the
comparison will be between a ‘stochastic version’ of the branch and bound
algorithm developed in Section 3, and the genetic algorithm outlined earlier.
For all the comparisons presented here the number of evaluations of the EI
criterion will be fixed for both BNB and GA; 500 for 2-dimensional, and
3000 for 4-dimensional test functions. In actual applications, the use of a
a tolerance ε for BNB might be preferred to the evaluation budget adopted
here. The evaluation budget facilitates direct comparison.

The entries in Tables 2 and 3 summarize the EI values found by BNB
and GA for two features of interest (contour, maximum and minimum) and
three test functions (Branin, two-dimensional and four-dimensional Levy).
The numbers are the maximum EI values averaged over approximately 500
different initial random maximin Latin hypercube designs. A few simulations
resulted in bad GP fit (especially when fitting the complex Levy functions, see
Figure 6) and both BNB and GA results for those simulations were excluded
from average calculation. The numbers in parentheses show the standard
errors of these EI values (s/

√
n = s/

√
500). For example, in the first row of

Table 2, 9.85 and 7.05 are the average maximum EI values obtained by BNB
and GA, and the second row contains the corresponding sample standard
error of 0.18 and 0.20 respectively.

Table 2 shows that for every case (choice of n0, feature of interest and test
function) BNB maximizes E[I2(x)] more effectively than GA. In some cases
the two methods are closer - for instance with 40 initial points in simultaneous
estimation of the maximum and minimum for the 2D Levy function the two
methods are practically indistinguishable. But in most of these simulations
BNB locates significantly higher EI than GA.

Analogous to the results presented in Table 2, Table 3 presents the results
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Table 2: EI optimization using BNB and GA for simultaneous estimation of the global

maximum and minimum, and contours for the Branin and 2D Levy functions

Maximum & minimum

Branin Levy 2D

BNB GA BNB GA

n0 = 10 9.85 7.05 3.58 2.74

(0.18) (0.20) (0.23) (0.18)

n0 = 20 7.46 4.45 1.33 1.13

(0.17) (0.18) (0.11) (0.10)

n0 = 30 6.51 3.48 0.76 0.66

(0.17) (0.16) (0.06) (0.05)

n0 = 40 5.61 2.75 0.68 0.66

(0.18) (0.14) (0.05) (0.04)

Contour at y = a

Branin (a = 45) Levy 2D (a = 70)

BNB GA BNB GA

n0 = 10 29.79 18.12 62.70 41.88

(0.67) (0.49) (6.19) (4.81)

n0 = 20 8.02 4.04 55.64 40.23

(0.24) (0.15) (5.14) (4.27)

n0 = 30 3.54 1.90 37.98 24.15

(0.15) (0.09) (3.58) (2.57)

n0 = 40 1.76 0.93 29.13 15.65

(0.08) (0.05) (3.19) (1.99)

for the four-dimensional Levy function. The features of interest are the
contour at y = 180 and simultaneous determination of the maximum and
minimum. Results are presented when BNB and GA are allocated 3000
evaluations of the EI criterion. For the 4D Levy function, BNB achieves
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Table 3: EI optimization using BNB and GA for estimation of the y = 180 contour, and

simultaneous estimation of the maximum and minimum for 4D Levy function

4 Dimensional Levy Function

Contour y=180 Maximum and Minimum

BNB GA BNB GA

n0 = 30 516.1 509.8 11.79 10.63

(38.39) (38.53) (0.54) (0.47)

n0 = 40 325.5 315.4 12.46 10.80

(27.14) (25.27) (0.56) (0.50)

n0 = 50 230.5 227.2 8.99 8.13

(16.62) (15.52) (0.38) (0.33)

n0 = 60 172.1 170.4 9.12 8.35

(14.90) (13.61) (0.39) (0.35)

slightly better results than GA for both of these EI criteria.
It should be noted that one of the principal advantages of the branch and

bound algorithm is that it is designed to give results within ε of the true max-
imum of E[I(x)]. Fixing the number of EI evaluations (and consequently the
number of iterations of the BNB/GA optimization algorithm) though nec-
essary for comparison, results in an approximation of the E[I(x)] maximum
which is not necessarily within ε tolerance of the true E[I(x)] maximum.

4.3. Long run comparison

The maximum EI values found by BNB and GA cannot be compared
after the first new point is added because the augmented designs {Xinit∪xnewga }
and {Xinit∪xnewbnb } differ, as will the fitted GP surfaces and the EI surfaces. As
a result, instead of comparing the maximum EI, the running best estimate
of the features of interest (e.g., maximum) after adding k-th new design point
are compared. We also use a non-sequential (static) approach, by fitting a
GP model with a random maximin Latin hypercube design of size n0 + k,
to serve as a benchmark for comparison. Ideally, both BNB and GA should
outperform this non-sequential approach. Next, we present three examples
to illustrate the comparisons.
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Example 1 - Branin. Suppose the computer model output y = f(x1, x2)
is generated using Branin function given by

f(x1, x2) =

(
x2 −

5.1x2
1

4π2
+

5x1

π
− 6

)2

+ 10

(
1− 1

8π

)
cos(x1) + 10, (13)

where x1, x2 ∈ [0, 5], however, we rescale the inputs to [0, 1]2. The Branin
function is a popular test function in the numerical optimization literature
for algorithms to locate maxima and minima. The true global maximum,
ymax = 55.6, and minimum, ymin = 0.398, of Branin function are attained at
(x1, x2) = (0, 0) and (x1, x2) = (0.62, 0.42). Figure 3 presents the long run
comparison of the BNB and GA optimizers for maximizing the EI criterion
(8). For each realization, a random maximin Latin hypercube designs of size
n0 = 20 was chosen as initial design, and then nnew = 30 additional trials
were found sequentially (one at-a-time) by maximizing the EI criterion and
augmented to the design. The results are averaged over 100 such realizations,
and the error bars denote the simulation standard error.
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Figure 3: Estimated optima for Branin function (true maximum = 55.6, minimum =

0.398); BNB (blue - solid), GA (red - dashed), static (black - dash-dotted)
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It is clear from Figure 3 that the optimization of the EI criterion using
BNB (blue) leads to the true maximum in significantly fewer number of
computer simulator runs compared to the (red) GA optimizer or baseline
(black) search of a random maximin Latin hypercube. However the estimated
global minimum does not seem to be significantly different for any of the
optimization techniques, though on average BNB attains a closer estimate
of the true minimum than GA which is in turn closer on average than the
static method. This is expected as the minimum of the Branin function is
“difficult” to locate (because there is a large, relatively flat region in which
the mimimum is found), whereas the maximum of the Branin function is
“easier” to locate, and a procedure that more quickly takes observations
near (0,0) will more quickly find the maximum (see Figure 4).
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Figure 4: Contours of Branin function in [0, 5]2 rescaled to [0, 1]2.

A comparison of a static design of size n0 + k and the sequential design
with EI∗3 (10) optimized using BNB and GA when estimating a contour of
height y = 45 is presented in Figure 5. Their performance is measured in
terms of the divergence between the true and estimated contour, given by

dk =

√√√√ 1

n

m∑
i=1

(ŷk(xc,i)− a)2, (14)

where {xc,i, i = 1, ...,m} denotes the discretized true contour at y = 45, and
ŷk(·) denotes the estimated process value after adding k new points or from
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a static design of size n0 + k. The results are averaged over 100 random
maximin Latin hypercube initial designs of size n0 = 20 each, and for each
realization, we add nnew = 30 additional trials.
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Figure 5: Estimated BNB(blue), GA(red), and static(black) contour divergence versus

number of new points added to initial design for the Branin test function.

Figure 5 displays the divergence dk for the Branin function with contour
at y = 45. In this simulation BNB and GA methods perform similarly, both
significantly better than the static design. The contour discrepancies of the
sequential methods approach 0 quickly; an indication that this contour is
relatively simple to locate. Since the contour at y = 45 is in the very bottom
left corner of the design region (see Figure 5), the maximin Latin hypercube
design is less likely to place points very near the contour y = 45, which re-
sults in poor performance for the static method.

Example 2 - Levy 2D. Suppose the computer model output y =
f(x1, x2) is generated using the Levy function given by

f(x1, ..., xd) = sin2(πw1) +
d−1∑
k=1

(wk − 1)2[1 + 10 sin2(πwk + 1)] + (wd − a)2,

where wk = 1 + (xk − 1)/4 and xk ∈ [−10, 10] for k = 1, ..., d. We rescale
the inputs x = (x1, ..., xd) to [0, 1]d. Levy function is also very popular for
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testing the performance of numerical optimizers. For the two-dimensional
Levy function (d = 2, see Figure 6), the global maximum, ymax = 95.4,
is attained at (x1, x2) = (0, 0) (in general, the function value is relatively
large near x1 = 0), and the minimum, ymin = 0, is attained at (x1, x2) =
(0.55, 0.55) (the middle of a flat region in the center of the input space).

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x1

x2

78
.0

40
5

52
.0

27

26.0135

8.
67

12

26
.0

13
5

8.6712

8.6712

8.6712

17.3423

8.6712

17
.3

42
3

43.3558

 

 

10

20

30

40

50

60

70

80

Figure 6: 2D Levy function contour plot rescaled to [0, 1]2

Figure 7 presents the long run comparison of the BNB and GA optimizers
for maximizing the EI criterion (8) developed for simultaneous estimation of
the global maximum and minimum. As in Example 1, the results are averaged
over 100 realizations with initial designs of size n0 = 20 and nnew = 30
additional trials. For this example, BNB is a clear winner and leads to
better estimates of the global optima in much fewer simulator runs for both
the maximum and minimum. As expected, GA performs significantly better
than the static design.

Figure 8 presents the divergence comparison of the sequential design with
the two optimizers as well as a static design when estimating the contour at
y = 70. Here also, each initial design was of size n0 = 20, nnew = 30 new trials
were added sequentially, and the results are averaged over 100 initial random
maximin Latin hypercube designs. As in the maximum and minimum case,
the sequence of points added by the BNB (blue) optimization of EI (10) lead
to quicker convergence of the contour divergence compared to GA (red). On
average the static (black) designs provide relatively minimal improvement to
the contour estimate.

21



0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

Number of Points Added to Initial Design

C
ur

re
nt

 E
st

im
at

e 
of

 G
lo

ba
l M

in
im

um

(a) Minimum

0 10 20 30 40
30

40

50

60

70

80

90

Number of Points Added to Initial Design
C

ur
re

nt
 E

st
im

at
e 

of
 G

lo
ba

l M
ax

im
um

(b) Maximum

Figure 7: Estimated optima for Levy 2D function (true minimum = 0, maximum =

95.4); BNB (blue - solid), GA (red - dashed), static (black - dash-dotted).
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Figure 8: Estimated contour divergence comparison for the 2D Levy function (y = 70);

BNB (blue - solid), GA (red - dashed) and static (black - dash-dotted).
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Example 3 - Levy 4D. We now use an example of a simulator with four-
dimensional inputs (Levy function) to demonstrate that careful optimization
of the EI criterion can save significant number of simulator runs. The simu-
lation results use 30 initial design points chosen from random maximin Latin
hypercube, and 20 additional points added sequentially. Comparisons using
this higher dimensional function may highlight the differences between the
two methods of optimization. BNB and GA were each given a budget of 3000
evaluations of the EI criterion. The true global maximum is approximately
255 at (0, 0, 0, 0), and the minimum is 0 at (0.55, 0.55, 0.55, 0.55).

Figure 9 displays the comparison of our BNB algorithm with the GA and
static designs in simultaneously estimating the maximum and minimum of
the 4D Levy function. The results are averaged over 100 random maximin
Latin hypercube initial designs of size n0 = 30. BNB begins to locate both
the minimum and maximum much more quickly than GA, which is in turn
better than the static design. BNB is the only method that gets close to the
maximum in 20 additional trials. All three methods are slow to locate the
global maximum, a reflection of the complexity of the Levy function.
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Figure 9: Estimated optima for Levy 4D function (true minimum = 0, maximum = 255);

BNB (blue - solid), GA (red - dashed) and static (black - dash-dotted).
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As before, we simulate the estimation of the y = 180 contour of the 4D
Levy function for BNB, GA, and static designs. The number of initial points
n0 was 30 and 20 new points were added. The results are averaged over 100
random maximin Latin hypercube designs. Figure 10 displays the contour
divergence dk for the three designs - sequential with EI∗3 (10) optimized
using BNB, GA and the static design. The new points selected by the BNB
algorithm allow estimation of the 4D Levy y = 180 contour more accurately
than the other two methods, decreasing the contour divergence much more
rapidly after only one point was added.
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Figure 10: Estimated contour divergence comparison for the 4D Levy function (y = 180);

BNB (blue - solid), GA (red - dashed) and static (black - dash-dotted).

As illustrated in these examples, the branch and bound algorithm is quite
competitive. For 2D and 4D Levy functions, BNB is superior to GA and
static in estimation of contours as well as simultaneous estimation of the
maximum and minimum. In estimating the maximum and minimum of the
Branin function BNB locates the maximum much more quickly than the
other methods, and all 3 methods are similar in estimating the minimum.
For contours of the Branin function GA performs on par with BNB, both
of which are preferable to a static design. The Branin function is relatively
smooth, and hence optimization of EI criteria is relatively simple, which may
explain the absence of differences between these methods in some cases.
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5. Discussion

We have generalized the expected improvement criterion for finding the
maximum and minimum (simultaneously) as the features of interest, and
demonstrated the use of this infill criterion on the Levy and Branin test
functions. Also we have developed branch and bound algorithms for contour
and maximum/minimum estimation, compared them with genetic algorithms
and static designs, and have shown that the BNB outperforms the other two
optimization approaches. This study demonstrate that careful optimization
of the EI criterion can save significant number of simulator runs.

It is worth noting that the performance of sequential design procedures
based on criteria such as expected improvement, is dependent on the extent to
which one actually locates the point that optimizes (or nearly optimizes) the
criterion. This has implications for future research in that if one attempts
to show that a new criterion outperforms others, it is important to know
that all procedures have been implemented well (i.e., that one is doing a
reasonably good job of finding the points that optimize the various criteria).
If not, differences in the performances of the criteria being compared may be
due to (or confounded with) a failure in implementing the procedures well.
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