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Abstract In a previous paper [11] we introduced the notion of a µ-derivative and
showed how to formulate differential equations in terms of this derivative. In this
paper, we extend this approach to the definition of a weak derivative which provides
a framework for solving variational problems with respect to fractal measures. We
apply our method to a specific boundary value problem, namely a 1D eigenvalue
problem over a fractal measure.

1 Introduction: Derivatives with respect to a fractal measure

In this paper we present a framework for solving variational problems with respect
to a fractal measure by extending the ideas from [11]. Our theory uses the weak
formulation and thus we define the weak derivative and the resulting Sobolev spaces
in the natural way. For the one-dimensional problems we discuss in this paper, the
variational problems can be transformed by an appropriate change-of-variable into
a problem involving Lebesgue measure and thus many of the classical results can
be used directly. Problems in higher dimensions require a substantial reworking of
the classical theory and are the subject of a future paper in preparation.

In a previous paper [11] we introduced the notion of a µ-derivative and we dis-
cussed how to formulate differential equations in which the derivative is replaced
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by a µ-derivative. We considered the equivalent integral equation,

u(x) = u0 +
∫ x

0
f (t,u(t)) dµ(t) , (1)

where µ is a fractal (Borel probability) measure, assumed to be nonatomic, on [0,1].
We studied the existence and uniqueness of solutions to these fractal integral equa-
tions based on the Picard operator. Our main interest was in the fractal nature of
the solutions and we used Iterated Function Systems (IFS) to investigate the be-
haviour and self-similarity of these solutions. As usual we can try to formulate an
integral equation into an equivalent differential form. Motivated by this we defined
the µ-derivatives of a function G to be

D+
µ (G)(x) := lim

h→0+

G(x+h)−G(x)
µ([x,x+h])

.

In a similar way, we can define

D−µ (G)(x) := lim
h→0+

G(x)−G(x−h)
µ([x−h,x])

.

Whenever the two limits are equal we label their common value Dµ(G)(x) and say
that G is µ-differentiable at x [11].

A version of the Fundamental Theorem of Calculus holds [11] so that the integral
equation (1) becomes the µ-differential initial value problem,

Dµ(u)(x) = f (x,u(x)), u(0) = u0. (2)

The following results are very useful when dealing with calculations involving the
notion of µ-derivative.

Proposition 1 ([11]). Let us suppose that µ is non-atomic and let F : K = supp(µ)→
[0,1] be the cumulative of µ and F−1 : [0,1]→ K be its inverse. Then, given a func-
tion f : K→ R, the following change of variable rule holds:∫

K
f (x)dµ(x) =

∫ 1

0
f (F−1(x))dx , (3)

where dx indicates integration over Lebesgue measure on [0,1].

Proposition 2 ([11]). Let us suppose that µ is non-atomic and let F : K = supp(µ)→
[0,1] be the cumulative of µ and F−1 : [0,1]→ K be its inverse. Then, given a func-
tion f : K→ R, the following chain rule holds

Dµ f (y) =
d
dx

f (F−1(x))|x=F(y), for µ-a.e. y, (4)

where dx denotes Lebesgue measure and y = F−1(x). Moreover, the following for-
mula for higher-order derivatives holds:
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Dn
µ f (y) =

dn

dxn f (F−1(x))|x=F(y). (5)

Using these properties it is not hard to show that the following version of inte-
gration by parts holds (where cov(A) is the convex hull of A).

Proposition 3. Let us suppose [a,b] = cov(supp(µ)). Then the following formula
holds:∫ b

a
Dµ f (t) g(t) dµ(t) = f (b)g(b)− f (a)g(a)−

∫ b

a
f (t)Dµ g(t) dµ(t). (6)

In the next sections we extend this approach to deal with boundary value prob-
lems (BVP) and with particular application to a simple example. We then introduce
the notion of a weak µ-derivative and present a variational formulation of the BVP.

The paper is organized as follows. Section 2 presents the notion of µ-weak
derivative and the definition of the Hilbert space H1

µ(K) along with an application to
a one-dimensional eigenvalue BVP. Section 3 recalls the basic definitions of Iterated
Function Systems and the notion of attractor. Section 4 presents some convergence
results and Section 5 contains some concluding remarks.

We provide a brief excursion into this topic with the intention to interest the
reader in the possibilities. Because of space limitations we do not provide proofs.
For a much more in-depth discussion, including proofs and extensions we invite the
reader to read our forthcoming paper (in preparation).

It is important to mention that our work here (as in [11]) is strongly related to
other previous work in analysis on time-scales (see [8, 2] and the references therein),
in measure differential equations (see [17, 3] and the references therein) and also in
Stieltjes derivatives (as nicely explained in [16]). More recent work in time-scale
analysis which is strongly related to the current paper can be found in [4] (and its
references). The papers [13, 14] present another method for defining calculus on
subsets of E ⊂ R which is geometrically defined and intrinsic to E (and so do not
depend on the existence of a measure on E). Their results imply the results in [11]
in the case of a “uniform” measure on E and thus could be used as an alternative
approach to ours.

From the perspective of applications, the use of fractal derivatives in physics has
been recognized, for example, in [6] as have been variational methods [7]. There is
an enormous literature on the subject which this paper cannot hope to address even
in part. Here we simply mention [18], [10] and [5] as noteworthy contributions to
the field.

2 The weak formulation and H1
µ(K)

Let K ⊂ R be a given compact “fractal” set with convex hull cov(K) = [a,b] and µ

be a Borel probability measure supported on it. For a given function φ : K→ R, we
denote by Dµ φ the µ-derivative of φ with respect to µ at x (which is well-defined
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at µ-almost all x). In the sequel we denote by C1
c (K) the set of all functions for

which the µ-derivative exists, it is continuous and φ(a)= φ(b)= 0. Given a function
u : K→ R, the weak µ-derivative of u is a function g : K→ R which satisfies∫

K
uDµ φdµ =−

∫
K

gφdµ , for all φ ∈C1
c (K) . (7)

We also denote the weak µ-derivative of u by Dµ u. Using the fact the µ is sup-
ported on K, the previous integral can be rewritten as∫

[a,b]
uDµ φdµ =−

∫
[a,b]

gφdµ , (8)

where µ also denotes its extension to [a,b] (i.e., the measure µ(A) = µ(K∩A)).
As usual, we define the space Lp

µ(K) as the set of all functions u : K → R that
satisfy the condition, ∫

K
|u|pdµ <+∞. (9)

In a similar way, we denote by W 1,p
µ (K) the following set,

W 1,p
µ (K) =

{
u : K→ R,u ∈ Lp

µ(K) : Dµ u exists and Dµ u ∈ Lp
µ(K)

}
, (10)

with H1
µ(K) = W 1,2

µ (K). It is not complicated to prove that the space H1
µ(K) is

Hilbert with respect to the inner product,

< u,v >=
∫

K
Dµ u(x)Dµ v(x)dµ +

∫
K

u(x)v(x)dµ ,

and induced norm

‖u− v‖H1
µ
= ‖Dµ u−Dµ v‖L2

µ (K)+‖u− v‖L2
µ (K).

Example: We now consider the Dirichlet problem taking the form,

D2
µ u(x)+λu(x) = f (x), u(0) = 0, u(1) = 0. (11)

Following the standard procedure, we obtain an equivalent formulation by first mul-
tiplying both sides by a test function ξ ∈C1

c (K). Integration by parts leads to∫
K

f (x)ξ (x)dµ(x) =
∫

K
D2

µ u(x)ξ (x)dµ(x)+λ

∫
K

u(x)ξ (x)dµ(x)

= Dµ u(b)ξ (b)−Dµ u(a)ξ (a)+
∫

K
Dµ u(x)Dµ ξ (x)dµ(x)

+ λ

∫
K

u(x)ξ (x)dµ(x)

=
∫

K
Dµ u(x)Dµ ξ (x)dµ(x)+λ

∫
K

u(x)ξ (x)dµ(x) .
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We arrive at the variational form,∫
K

Dµ uDµ ξ dµ +λ

∫
K

uξ dµ =
∫

K
f ξ dµ. (12)

If we define the bilinear form,

b(u,v) :=
∫

K
Dµ u(x)Dµ v(x)dµ(x)+λ

∫
K

u(x)v(x)dµ(x) , (13)

and the linear form,
θ(v) =

∫
K

f (x)v(x)dµ(x) , (14)

then (11) can be written as follows: Find u ∈ H1
µ(K) such that

b(u,v) = θ(v) (15)

for any v ∈H1
µ(K). The existence and uniqueness of solutions to (15) can be proved

using the classical Lax-Milgram Theorem.
We conclude this section by showing how our method in [11] may be used to

the 1D eigenvalue-BVP in Eq. (11). Once again assuming that µ is non-atomic,
we define the variable t = F(x) = µ((−∞,x]), where F(x) denotes the cumulative
distribution function associated with µ . Also let x = F−1(t). Using the change of
variable presented in Proposition 2, we obtain

D2
µ u(x)+λu(x) =

d2

dt2 u(F−1(t))|t=F(x)+λu(x) = 0, u(a) = 0, u(b) = 0 ,

which is equivalent to

d2

dt2 u(F−1(t))(t)+λu(F−1(t)) = 0 .

By defining g(t) = u(F−1)(t), this can be written as

d2

dt2 g(t)+λg(t) = 0, g(0) = 0, g(1) = 0 .

This, of course, is the classical “vibrating string” eigenvalue problem on [0,1] with
solutions λn = (nπ)2 and gn(t) = sin(nπt), n≥ 1. From these, the solutions to (11)
may expressed in terms of the variable x as simply un(x) = sin(nπF(x)).

In each of Figures 1 - 3 are shown histogram approximations to the invariant
measure µ and its CDF function Fµ along with the first three eigenfunctions un(x).
In Figure 1, the IFS is w1(x) = x/3 and w2(x) = x/3+2/3 with probabilities p1 =
p2 = 1/2. This IFSP generates a “uniform” distribution on the classical middle-1/3
Cantor set. The same two IFS maps are employed in Figure 2, but with probabilities
p1 = 2/5 and p2 = 3/5. The larger weight “towards the right” is evident in all
portions of µ , Fµ (its CDF) and the eigenfunctions. In Figure 3, the two IFS maps
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are w1(x) = x/2 and w2(x) = x/2+1/2 with probabilities p1 = 2/5 and p2 = 3/5.
Here, the attractor is [0,1]. Once again, the unequal weighting produces a (self-
similar) “shift” of the measure to the right.

Fig. 1 “Uniform Cantor measure” µ , CDF Fµ , and first three eigenfunctions un(x)= sin(nπFµ (x)).

Fig. 2 “Non-uniform Cantor measure” µ , CDF Fµ , and first three eigenfunctions sin(nπFµ (x)).

Fig. 3 Non-uniform fully supported measure µ , CDF Fµ , and first three eigenfunctions
sin(nπFµ (x)).

Note that in both Figure 1 and Figure 2 the eigenfunctions are illustrated by
extending them to be constant over the “gaps” in the complement of the Cantor set.
(These functions are supported only on the Cantor set itself.) This is done in order
to make their graphs visible.
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3 Some basics of Iterated Function Systems

In what follows, we let (X ,d) denote a compact metric space. An N-map Iterated
Function System (IFS) on X , w = {w1, · · · ,wN}, is a set of N contraction mappings
on X , i.e., wi : X → X , i = 1, · · · ,N, with contraction factors ci ∈ [0,1). (See [9, 1,
12].) Associated with an N-map IFS is the following set-valued mapping ŵ on the
space H (X) of nonempty compact subsets of X ,

ŵ(S) :=
N⋃

i=1

wi(S) , S ∈H (X) . (16)

Theorem 1. [9] For A,B ∈H (X),

h(ŵ(A), ŵ(B))≤ ch(A,B) where c = max
1≤i≤N

ci < 1 (17)

and h denotes the Hausdorff metric on H (X).

Corollary 1. [9] There exists a unique set A ∈H (X), the attractor of the IFS w,
such that

A = ŵ(A) =
N⋃

i=1

wi(A). (18)

Moreover, for any B ∈H (X), h(A, ŵnB)→ 0 as n→ ∞.

An N-map Iterated Function System with Probabilities (IFSP) (w,p) is an
N-map IFS w with associated probabilities p = {p1, · · · , pN}, ∑

N
i=1 pi = 1. Let

M (X) denote the set of probability measures on (Borel subsets of) X with Monge-
Kantorovich distance dMK : For µ,ν ∈M (X),

dMK(µ,ν) = sup
f∈Lip1(X)

[∫
f dµ−

∫
f dν

]
, (19)

where Lip1(X)= { f : X→R | | f (x)− f (y)| ≤ d(x,y)}. The metric space (M (X),dMK)
is complete [9, 1].

Associated with an N-map IFSP is a mapping M : M →M , often referred to as
the Markov operator, defined as follows. Let ν = Mµ for any µ ∈M (X). Then for
any measurable set S⊂ X ,

ν(S) = (Mµ)(S) =
N

∑
i=1

pi µ(w−1
i (S)) . (20)

Theorem 2. [9] For µ,ν ∈M (X),

dMK(Mµ,Mν)≤ cdMK(µ,ν) . (21)
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Corollary 2. [9] There exists a unique measure ν̄ ∈M (X), the invariant measure
of the IFSP (w,p), such that

µ̄(S) = (Mµ̄)(S) =
N

∑
i=1

piµ̄(w−1
i (S)) . (22)

Moreover, for any ν ∈M (X), dMK(µ̄,Mnν)→ 0 as n→ ∞.

Theorem 3. [9] The support of the invariant measure µ̄ of an N-map IFSP (w,p)
is the attractor A of the IFS w, i.e., supp µ̄ = A.

The next result is rather technical but is used in our convergence results in Section
4. The proof uses the fact that an IFSP on R induces a natural IFS-type operator on
cumulative distribution functions which is contractive in the uniform norm.

Theorem 4. Let (w,p) be an N-map IFSP with non-atomic invariant measure µ .
Let [a,b] = cov(supp(µ)) and suppose that wi([a,b])∩w j([a,b]) for i 6= j either
empty or consisting of one point.

Let µ0 be any initial Borel probability measure supported on [a,b], µn+1 = Mµn,
F : [a,b]→ [0,1] be defined as F(x) = µ([a,x]) and Fn : [a,b]→ [0,1] be defined as
Fn(x) = µn([a,x]). Then Fn→ F uniformly on [a,b].

4 Convergence of Solutions

We now discuss a simple convergence result for the above eigenvalue problem. We
restrict our presentation to the simplest case for clarity and brevity; more general
results are certainly possible (including results on the variational problem (12)) but
we leave them to our future paper.

Take an IFSP (w,p) and initial measure µ0 so that they both satisfy the con-
ditions of Theorem 4 and consider the sequence of eigenvalue problems: Find
u ∈ H1

µn([a,b]) so that∫
[a,b]

DµnuDµnvdµn +λ

∫
[a,b]

uv dµn = 0 , for all v ∈ H1
µn([a,b]) . (23)

Proposition 4. Given µn and un as above we have that un → u uniformly and u is
solution to the problem:∫

[a,b]
Dµ uDµ vdµ +λ

∫
[a,b]

uvdµ = 0. (24)

We end with a small taste of a more general problem. Start with µ0 as the
Lebesgue measure. Then the solutions un to the variational problems,∫

[a,b]
Dµ unDµ v dµn +λ

∫
[a,b]

unv dµn =
∫
[a,b]

f v dµn , (25)
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can be found by using more classical methods involving subproblems with weighted
versions of the Lebesgue measure. Note that by using the definition of the Markov
operator and a change of variable, the first term in (25) can be written as follows,∫

Dµ unDµ v dµn =
∫

Dµ unDµ v dMn
µ0 =

N

∑
σ1,...,σn=1

pσ1 pσ2 ...pσn

∫
(Dµ unDµ v)◦wσ1 ◦wσ2 ◦ · · · ◦wσn dµ0.

Similarly,

λ

∫
uv dµn =

N

∑
σ1,...,σn=1

pσ1 pσ2 ...pσnλ

∫
(uv)◦wσ1 ◦wσ2 ◦ · · · ◦wσn dµ0

and ∫
f v dµn =

N

∑
σ1,...,σn=1

pσ1 pσ2 ...pσn

∫
( f v)◦wσ1 ◦wσ2 ◦ · · · ◦wσn dµ0.

Thus the variational problem with respect to µn can be reformulated as follows: Find
un ∈ H1

µ([a,b])) such that

N

∑
σ1,...,σn=1

pσ1 pσ2 ...pσn

∫
Ks

(Dµ unDµ v)◦wσ1 ◦wσ2 ◦ · · · ◦wσn dµ0+

N

∑
σ1,...,σn=1

pσ1 pσ2 ...pσnλ

∫
Ks

(uv)◦wσ1 ◦wσ2 ◦ · · · ◦wσn dµ0 =

N

∑
σ1,...,σn=1

pσ1 pσ2 ...pσn

∫
( f v)◦wσ1 ◦wσ2 ◦ · · · ◦wσn dµ0.

Notice that these integrals are all performed with respect to Lebesgue measure.

5 Conclusion

In [11] we introduced the notion of µ-derivative and we discussed how to formu-
late differential equations in which the derivative is replaced by a µ-derivative. In
this paper, instead, we have extended this approach to the definition of weak deriva-
tive and to deal with boundary value problems. We have shown an application to a
specific BVP, namely an eigenvalue problem, and presented a variational formula-
tion of this problem in 1D. Future avenues include an extension of this approach to
introduce weak partial derivatives to analyze variational problems on 2D fractals.
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