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Abstract

In this paper we extend the notion of stochastic efficiency and inef-
ficiency in portfolio optimization to the case of incomplete information
by means of set-valued probabilities. The notion of set-valued probabil-
ity models the concept of incomplete information about the underlying
probability space and the probability associated with each scenario. Un-
like other approaches in literature, our notion of inefficiency is introduced
by means of the Monge-Kantorovich metric. We provide some numerical
examples to illustrate this approach.
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1 Introduction

In Portfolio Optimization the notion of optimality is based on the notion of
stochastic dominance and on a knowledge of the underlying probability space.
However, often the probabilities associated with each scenario are not completely
known. This leads to analyzing portfolio problems with incomplete information
[5, 6, 12, 22, 23, 32, 33]. The notion of set-valued probability seems to be
the right tool to describe this lack of information. In this setting, each event
is associated with a compact and convex set that models the uncertainty; as
a result, the comparison of uncertainties can be based on a partial order and
many such partial orders can be used. The consequence is a rich framework for
modeling uncertainty.

In this paper we focus on the problem of evaluating whether a given port-
folio is stochastically efficient in the presence of a lack of information. More
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specifically, we consider the case where the Decision Maker (DM) knows the set
of all possible scenarios or the underlying space of events but he/she does not
exactly know the probability distribution of each event and so we describe this
uncertainty with a set-valued probability.

We extend the classical notion of inefficiency measure by introducing a point-
to-set distance between a given set-valued probability and the nearest proba-
bilities that can make a given portfolio to be stochastically efficient for some
admissible utility function. To introduce this distance we rely on an extended
notion of the Monge-Kantorovich distance between set-valued probabilities in-
troduced in [21].

The paper is organized as follows. Section 2 recalls some basic definitions
and constructions in the theory of convex sets, Section 3 presents background in
set-valued analysis, and Section 4 focuses on the definition of set-valued prob-
abilities and the Monge-Kantorovich distance between set-valued probabilities.
Section 5 provides a brief comparison of set-valued probability with other gen-
eralizations of classical probability, focusing specifically on a comparison with
imprecise probability. Section 6 presents the notion of efficiency and inefficiency;
our notion of inefficiency is introduced by means of the Monge-Kantorovich dis-
tance between probability measures. Section 7 extends the notion of stochastic
efficiency and inefficiency to the case of set-valued probabilities. Finally Section
8 presents a numerical example and Section 9 concludes.

2 Preliminaries on Sets and Probabilities

In this section we present some basic facts related to sets and set-valued func-
tions. More details can be found in [2, 3]. In the sequel we denote by K the
collection of all nonempty compact and convex subsets of Rd. Addition of sets
and scalar multiplication (λ ∈ R) for K are defined by

A+B := {a+ b : a ∈ A, b ∈ B} and λA = {λa : a ∈ A}.

For A ∈ K, we say that A is nonnegative (A ≥ 0) if 0 ∈ A. Given A ∈ K the
support function spt(·, A) : Rd → R is defined by

spt(p,A) = sup{p · a : a ∈ A}.

The support function completely defines A since

A =
⋂
‖p‖=1

{x : x · p ≤ spt(p,A)}. (2.1)

Furthermore, A ⊆ B if and only if spt(p,A) ≤ spt(p,B) for all p ∈ S1 = {p :
‖p‖ = 1}. The function spt(, ) also satisfies the following properties: For all
λ ≥ 0 and A,B ∈ K,

spt(p, λA+B) = λ spt(p,A) + spt(p,B), spt(p,−B) = spt(−p,B)
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but it is usually the case that spt(p,−A) 6= − spt(p,A).
For any A ∈ K, we can also define the norm of A using the support function

as follows
‖A‖ := sup{‖x‖ : x ∈ A} = sup

‖p‖=1

spt(p,A).

This definition satisfies all of the classical property of a norm. There is a nice
connection between the support function and the Hausdorff distance [7]: for
A,B ∈ K

dH(A,B) = sup
‖p‖=1

| spt(p,A)− spt(p,B)|.

It is also the case that both addition and scalar multiplication on K are contin-
uous in the Hausdorff distance.

A set A ⊂ Rd is balanced if λA ⊆ A for all |λ| ≤ 1. For us a unit ball in Rd
is any balanced B ∈ K with 0 ∈ int(B). Any such unit ball defines a norm on
Rd via the Minkowski functional

‖x‖ = sup{λ ≥ 0 : λx ∈ B}.

Given a unit ball B, the dual sphere is defined as

S∗ = {y : sup{y · x : x ∈ B} = 1} ⊂ Rd

and is also a nonempty compact set. Notice that since B is compact, for each
y ∈ S∗, there is some x ∈ B with y · x = 1.

Given a set Ω and a σ-algebra A on Ω a probability measure on (Ω,A) with
values in [0, 1] is a function Φ : A → [0, 1] such that Φ(∅) = 0, Φ(Ω) = 1, and

Φ

(⋃
i

Ai

)
=
∑
i

Φ(Ai) (2.2)

for any sequence of disjoint sets Ai ∈ A. Similarly one can define the notion of
vector-valued probability measure on (Ω,A). This is a function Φ : A → [0, 1]s,
where s ∈ N, such that Φ(∅) = (0, ..., 0) ∈ Rs, Φ(Ω) = (1, ..., 1) ∈ Rs, and

Φ

(⋃
i

Ai

)
=
∑
i

Φ(Ai) (2.3)

for any sequence of disjoint sets Ai ∈ A. This last property is meant to be sat-
isfied componentwise. Note that with this definition a vector-valued probability
measure is simply a vector of probability measures.

3 Set-valued Functions

A set-valued function or multifunction taking compact and convex values is a
map from Rn to K. For a given set-valued function f : Rn → K and measure µ,
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we can define the integral of f with respect to µ as an element of K via support
functions using the property (see [3])

spt

(
q,

∫
Rn

f(x) dµ(x)

)
=

∫
Rn

spt(q, f(x)) dµ(x),

which defines the set as in (2.1). For more results on set-valued analysis see [3].

Given a compact subset Θ of Rn and a set-valued function f : Θ ⊆ Rn → K,
consider the optimization problem

min
x∈Θ

f(x). (3.4)

We say that x0 ∈ Θ is a global minimizer for f over Θ if for any x ∈ Θ we have
f(x0) ⊆ f(x). Notice that we are using the natural ordering of sets given by
inclusion.

Let us now recall that a set-valued function f : R→ K is increasing if

f(x) ⊆ f(y) (3.5)

for x, y ∈ R, x ≤ y; moreover, f : R→ K is concave if

tf(x) + (1− t)f(y) ⊆ f(tx+ (1− t)y) (3.6)

for x, y ∈ Rn, t ∈ [0, 1].
Using the support function, we have that f is concave if and only if the

function spt(p, f(x)) is concave for all ‖p‖ = 1.

4 The Notion of Set-Valued Probability

We provide only basic definitions and those properties of multimeasures that
we will need; for more information and proofs see [1, 2, 3, 14, 15, 16, 29, 31].
A set-valued measure or multimeasure on (Ω,A) with values in K, where A is a
σ-algebra on the set Ω, is a function Φ : A → K such that Φ(∅) = {0} and

Φ

(⋃
i

Ai

)
=
∑
i

Φ(Ai) (4.7)

for any sequence of disjoint sets Ai ∈ A. Convergence of the infinite sum in
(4.7) is given in the Hausdorff distance.

A multimeasure Φ is nonnegative if Φ(A) ≥ 0 (i.e., 0 ∈ Φ(A)) for all A.
This condition implies monotonicity of the measure since if A ⊆ B then Φ(A) =
{0} + Φ(A) ⊆ Φ(B \ A) + Φ(A) = Φ(B). Thus nonnegative multimeasures a
nice generalization of (nonnegative) scalar measures. The total variation of a
multimeasure Φ is defined in the usual way as

|Φ|(A) = sup
∑
i

‖Φ(Ai)‖,
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where the supremum is taken over all finite measurable partitions of A ∈ A. The
set-function |Φ| defined in this fashion is a (nonnegative and scalar) measure on
Ω. If |Φ|(Ω) <∞ then Φ is of bounded variation.

If Φ is a multimeasure and p ∈ Rd then the scalarization Φp defined by

Φp(A) = spt(p,Φ(A)) (4.8)

is a signed measure on Ω and is a measure if Φ is nonnegative.

Example 4.1 Given a vector-valued probability µ = (µ1, ..., µs) there is a nat-
ural way to define an associated set-valued measure as

Φ(A) = [−µ1(A), µ1(A)]× ...× [−µs(A), µs(A)].

It is easy to check that Φ satisfies all properties that characterize a set-valued
measure. Notice that here we have Φ(Ω) = [−1, 1]s is the l∞ unit ball. In this
case for λ = (λ1, λ2, . . . , λs) with ‖λ‖1 = 1 we have

Φλ(A) =
∑
i

|λi|µi(A)

is just a convex combination of the components µi of µ.
Thus the case of vector-valued probability can be easily analyzed using the

associated set-valued probability (to be discussed below).

One simple way to construct a multimeasure is by integrating a set-valued
density function F with respect to a measure µ:

Φ(A) =

∫
A

F (x) dµ(x). (4.9)

This integral can be defined in several different ways (see [3]). If the set-
valued function F is nonnegative (that is, 0 ∈ F (x) for all x), then the resulting
multimeasure will also be nonnegative. In addition, if 0 ≤ f(x) ≤ g(x) are
scalar functions and Φ is a positive multimeasure, then∫

f(x) dΦ(x) ⊆
∫
g(x) dΦ(x),

the convexity of the values of Φ is crucial.

Definition 4.2 Let B ∈ K be a unit ball. A B set-valued probability or proba-
bility multimeasure (or pmm) on (Ω,A) is a nonnegative multimeasure Φ with
Φ(Ω) = B.

A pmm Φ defines a parameterized family, Φp for p ∈ S∗, of probability
measures. However, in general Φp and Φq are related and the relationship can
be quite complicated (the main constraint on this relationship is that p 7→ Φp(A)
is convex).

5



We can construct a pmm by integrating an appropriate density F against a
finite measure µ, as in (4.9). For this to define a pmm we need F to satisfy some
properties. The simplest conditions are to assume that F (x) ∈ K is balanced
for each x, ‖F (x)‖ ≤ C for some C and all x, and

0 ∈ int
∫

Ω

F (x) dµ = int(B).

Given a specific B, it is difficult to find a density F which will give B; it is better
to use the integral of the density to define B.

As usual, by a random variable on (Ω,A) we mean a Borel measurable
function X : Ω → R and its expectation with respect to a pmm Φ is defined in
the usual way as

EΦ(X) =

∫
Ω

X(ω) dΦ(ω). (4.10)

This integral can be constructed using support functions (that is, using the Φp)
and each part of the decomposition X = X+ − X− separately (since support
functions work best with nonnegative scalars); see [16] for another approach.
Since 0 ∈ Φ(A) for each A, it is easy to see that 0 ∈ EΦ(X) as well.

Example 4.3 Let s ∈ 2N and qi ∈ Rd be given with ‖qi‖ = 1 and q2i = −q2i+1.
Then for any s probability measures µi, the function Φ defined by

Φ(A) = co({µi(A)qi})
is a probability multimeasure with total mass the polytope in Rd with vertices
qi. (Here co(S) is the closed convex hull of S ⊂ Rd.)

This example is a generalization of Example 4.1 but where the different
directions are not independent and thus the component measures µi “interact”
in the resulting pmm Φ.

Example 4.4 (Finite Ω) When Ω = {ω1, ω2, . . . , ωs} is a finite set, a pmm Φ
on Ω is defined by a collection of set-valued probabilities {P1, P2, . . . , Ps} ⊂ K
such that

∑
i Pi = B and 0 ∈

⋂
i Pi. For a random variable X, we have EΦ(X) =∑

iX(ωi)Pi.
Unlike in the standard (scalar-valued probability) case, we generally cannot

use the Pi to rank the events ωi from “most probable” (greatest Pi) to “least
probable” (least Pi). This is the strength of using set-valued probabilities as
it allows us to express more complicated uncertainty relationships among the
elementary events.

There are extensions of the strong law of Large Numbers, the Glivenko-
Cantelli, and the Central Limit Theorems. More details on these can be found in
[23]. We mention that the notion of an i.i.d. sample is fundamentally different in
the set-valued case since such a sample must necessarily contain some set-valued
information if there is to be any chance of recovering the expectation, which is
a set in this context. However, the standard limiting results (just mentioned)
allow one to use familiar tools of statistical estimation. The resulting sequence
of set-valued estimates converge in the Hausdorff distance to the true value.
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5 Imprecise vs Set-Valued Probability

The notion of imprecise probability has been widely investigated in the liter-
ature as it represents a quite natural way to extend the traditional notion of
probability. While in the tradition approach associated with each event there is
a number in [0, 1], in the theory of imprecise improbability this is replaced by a
subset [pl, pu], where pl and pu are the so-called lower and upper probabilities.
The notion of imprecise probability aims at quantifying, at the same time, the
aleatory and the uncertainty to provide precise values of probability measures.

Imprecise probability has been used in several contexts and different appli-
cations have been proposed as well. Some classical examples in this theory are
the Dempster-Shafer evidence theory ([9, 30]), coherent lower prevision theory
([35]), probability bound analysis ([13]), F-probability ([37]), and possibility
theory ([11]).

The research literature also contains other approaches that involve exten-
sions to set-valued objects. Among these are the notions of fuzzy randomness
([4]), random sets ([26]), clouds ([27]), and the notion of imprecise probability
based on the generalized interval been presented in [36].

Set-valued measures were first introduced for the needs of mathematical eco-
nomics in [34] where it was used to study equilibria in exchange economies in
which coalitions correspond to measurable sets and are the primary economic
units (see also [8]). Moreover, the study of set-valued measures has been devel-
oped extensively because of its applications in other fields such as optimization
and optimal control.

Imprecise probability can be modeled using set-valued probability. In fact,
given a sample space Ω and a sigma-algebra F , for any set A ∈ F the imprecise
probability associated with A is a generalized interval [pl(A), pu(A)] ⊂ [0, 1]
where pl and pU are classical probabilities (and we don’t insist that pl(A) ≤
pu(A)). As such this structure is encoded in a pair of classical probabilities
(which can also be thought of as a vector-valued measure p : F → [0, 1]2).

The notion of set-valued probability cannot be seen immediately as a gen-
eralization of the notion of imprecise probability, as the notion of set-valued
probability is implicitly connected with a given notion of ordering (and thus
also of positivity). In this paper we assume that the ordering is based on set-
inclusion and, therefore, the notion of positivity is based on the inclusion of the
zero element (this is forced since ∅ ⊆ A and thus {0} = Φ(∅) ⊆ Φ(A)). However,
if we define the set-valued probability Φ : F → [0, 1] as Φ(A) = [−pl(A), pu(A)]
this definition satisfies all the properties that characterize a set-valued proba-
bility. In particular, one can easily prove that:

• 0 ∈ Φ(A), for any A ∈ F ,

• if A ⊆ B then Φ(A) ⊆ Φ(B),

• Φ
(⋃+∞

i=1

)
=
∑+∞
i=1 Φ (Ai) for any sequence of disjoint sets Ai, i ∈ N.
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The mapping [pl(A), pu(A)] 7→ [−pl(A), pu(A)] provides the correspondence be-
tween this particular set-valued probability and the imprecise probability given
in the generalized interval form (mentioned above).

6 Stochastic Efficiency and Inefficiency

Let (Ω,F , p) be a probability space, where Ω is the space of all events, F is
the sigma-algebra of all measurable events, and p is a probability defined on
F . We use P to denote the set of all probability measures defined on (Ω,F).
Let Xj : Ω→ R+ be random variables, j = 1...N , with outcome Xj(ω) for any
possible scenario ω ∈ Ω (as usual, the Xj represent the assets). Let

Λ = {λ ∈ RN+ :

N∑
i=1

λi = 1}

so that Yλ =
∑N
j=1 λjXj is a portfolio (a convex combination of the assets Xj)

for λ ∈ Λ.
Additionally, we introduce the space U of all utility functions defined as:

U = {u : R→ R, u ∈ C1, u is non-decreasing and concave}.

The concept of utility is used to represent consumer’s preference ordering over a
choice set and it assigns a real number to each alternative in such a way that, if
consumer prefers alternative A to alternative B, then alternative A is assigned
a number greater than alternative B. If u ∈ U then the preferences described
by u are weakly monotone and convex. The following theorem shows that U
can be equipped with a distance.

Proposition 6.1 (U , d∗sup) is a complete metric space where, as usual, d∗sup is
defined as:

d∗sup(u1, u2) = dsup(u1, u2)+dsup(u′1, u
′
2) = sup

x∈R
|u1(x)−u2(x)|+sup

x∈R
|u′1(x)−u′2(x)|

for any u1 and u2 in U .

Proof. The proof is quite straightforward. To prove that d is a distance
is standard. The completeness, instead, follows by noticing that the d∗sup met-
ric induces the uniform convergence of any sequence of functions un and their
derivatives u′n, and this is enough the preserve differentiability, monotonicity,
and concavity.

Definition 6.2 Given λ̂ ∈ Λ, we say that Yλ̂ is stochastically efficient with
respect to p ∈ P if

λ̂ = argmaxλ∈ΛEp(u(Yλ)) = argmaxλ∈Λ

∫
Ω

u(Yλ(ω))dp(ω) (6.11)

for some utility function u ∈ U .
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In other words, Yλ̂ is stochastically efficient with respect to p if there exists
a utility function u ∈ U such that

Ep(u(Yλ)) ≤ Ep(u(Yλ̂)) (6.12)

for any λ ∈ Λ. Other definitions of stochastic efficiency could also be considered
which include, for instance, an upper bound for the portfolio variance. This
represents an open research avenue for further analysis in this area.

Due to the hypotheses on the utility function, the optimization problem

max
λ∈Λ

Ep

u
 N∑
j=1

λjXj


is a concave optimization program on the polyhedral set Λ and, therefore, it has
at least a global maximizer (not unique, in general, because u is only concave).
The problem is also well-posed, in the sense that if the sequence of portfolios
Xk = (Xk

1 , ..., X
k
N ) converges pointwise to the portfolio X = (X1, ..., XN ), for

a.e. ω ∈ Ω, and λk ∈ Λ is the solution to the sequence of problems:

max
λ∈Λ

Ep

u
 N∑
j=1

λjX
k
j


then λk → λ and λ ∈ Λ is the optimal solution to the problem

max
λ∈Λ

Ep

u
 N∑
j=1

λjXj

 .

Remark 6.3 If the notion of classical probability is replaced by a vector-valued
probability, the above notion of efficiency has to be understood in the Pareto
sense. However, because we have already noticed that the vector-valued case
can be included in the set-valued one by introducing an associated set-valued
probability, this case is subsumed by the more general set-valued one which we
discuss in detail in the next section.

The following result has been proved in [28] for the case of discrete space
events. Here we extend this result to the case of any arbitrary probability space.

Proposition 6.4 A given portfolio Yλ̂ is optimal for given u ∈ U and p ∈ P
and if and only if it obeys the following first-order optimality conditions:∫

Ω

u′(Yλ̂(ω))(Xi(ω)− Yλ̂(ω))dp(ω) ≤ 0

for all i = 1...N .
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Proof. The proof of this result is quite straightforward and it follows by
applying the classical first order optimality conditions for a set-constrained prob-
lem to the function q(λ) = E(u(Yλ)) =

∫
Ω
u(Yλ(ω))dp(ω).

When the space is discrete, namely Ω = {ω1, ..., ωS}, then the previous
condition reduces to:

S∑
s=1

p(ωs)u
′(Y (ωs))(Xi(ωs)− Yλ̂(ωs)) ≤ 0

for all i = 1...N as in [28].
Suppose that Ω is also a metric space with respect to a distance d. Given

two probability measures p, q ∈ P, the Monge-Kantorovich distance between p
and q is given by

dMK(p, q) = sup
f∈Lip1

{∫
Ω

f(ω)dp(ω)−
∫

Ω

f(ω)dq(ω)

}
where Lip1(Ω) is defined to be the set of all Lipschitz functions f : Ω→ R such
that

|f(ν)− f(ξ)| ≤ d(ν, ξ)

for any ν, ξ ∈ Ω. If we define the point-to-set distance d′(q,Ξ) as

d′MK(q,Ξ) := inf
p∈Ξ

dMK(q, p)

then the measure of inefficiency we use can be written as:

SIM(q) = d′MK(q,P∗)

where

P∗ = {p ∈ P : ∃u ∈ U such that
∫

Ω

u′(Y (ω))(Xi(ω)−Y (ω))dp(ω) ≤ 0, i = 1...N}.

In other words SIM(q) is the distance point-to-set between q and the set P∗.
A given portfolio Yλ is stochastically efficient relative to a given p ∈ P if and
only if SIM(p) = 0. If SIM(p) > 0 we say the portfolio Y is stochastically
inefficient.

If Ω ⊆ R, then the Monge-Kantorovich distance dMK(p, q) between two prob-
ability measures p and q can be rewritten in terms of the cumulative functions
Fp and Fq as

dMK(p, q) =

∫
Ω

|Fp(x)− Fq(x)| dx.

If Ω is discrete set, namely Ω = {ω1, ..., ωS}, the Monge-Kantorovich distance
becomes

dMK(p, q) = max

{
S∑
s=1

f(ωs)(p(ωs)− q(ωs)) : ‖Af‖∞ ≤ 1

}
,
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where A is the edge-adjacency matrix for the weighted graph that describes the
geometry of Ω (see [25] for details and discussion). Notice that this is a linear
programming problem and so it can be solved by classical methods. The special
structure also allows one to easily find approximate solutions. For estimating
dMK from empirical data one can see [17, 18, 19].

7 Stochastic Efficiency and Inefficiency with Set-
Valued Probabilities

In this section we extend the notion of portfolio efficiency to the case of prob-
ability multimeasures. As before we let (Ω,F ,Φ) be a probability space, where
Ω and F are defined as in the previous section but now Φ is a set-valued proba-
bility according to the definition presented in Section 4. We also introduce the
space of all B set-valued probabilities on F , defined as

P = {Φ : Ω→ K : Φ(Ω) = B}. (7.13)

We comment that the particular choice of B does not affect the theory we
present.

As in the previous section, Xj are random variables which represent the
possible assets and Yλ =

∑
i λiXi is a portfolio with λ ∈ Λ and again

Λ = {λ ∈ RN+ :

N∑
i=1

λi = 1}.

By using the notion of the expected value with respect to a set-valued probability
Φ, we can define the extend the notion of stochastic portfolio efficiency.

Definition 7.1 Given λ̂ ∈ Λ, we say that Yλ̂ is stochastically efficient with
respect to the set-valued probability Φ if

λ̂ = argmaxλ∈ΛEΦ(u(Yλ)) = argmaxλ∈Λ

∫
Ω

u(Yλ(ω)dΦ(ω) (7.14)

for some utility function u ∈ U .

Here the maximum has to be understood in the sense of set-inclusion ordering
as previously discussed. The portfolio Yλ̂ is stochastically efficient with respect
to Φ if there exists an utility function u ∈ U such that

EΦ(u(Yλ)) ⊆ EΦ(u(Yλ̂)) (7.15)

for any λ ∈ Λ.
The following result characterizes the concavity of the optimization problem

maxλ∈Λ EΦ(u(Yλ)).
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Proposition 7.2 The function ξ(λ) := EΦ

(
u
(∑N

j=1 λjXj

))
is a concave set-

valued map.

Proof. To prove it, let us take λ1, λ2 ∈ Λ and α ∈ (0, 1). Then the following
inequality holds:

u(Yαλ1+(1−α)λ2
)) ≥ αu(Yλ1

) + (1− α)u(Yλ2
)

For any direction p ∈ S1, the expected value with respect to the probability
measure Φp reads as

EΦp(u(Yαλ1+(1−α)λ2
)) =

∫
Ω

u(Yαλ1+(1−α)λ2
(ω))dΦp(ω) ≥

α

∫
Ω

u(Yλ1
(ω))dΦp(ω) + (1− α)

∫
Ω

u(Yλ2
(ω))dΦp(ω) =

αEΦp(u(Yλ1
)) + (1− α)EΦp(u(Yλ2

))

which now implies the (set-valued) concavity of the map ξ(λ).
The concavity property implies that any local solution to the program

max
λ∈Λ

E(u(Yλ))

is a global solution and that it is well-posed.

We first observe that if a given portfolio is stochastically efficient with respect
to Φ then it is stochastically efficient for any scalarized probability measure Φp.
The converse is also true. That is, if a portfolio Y is stochastically efficient with
respect to all the scalarized probability measures Φp then it is stochastically
efficient with respect to Φ.

Proposition 7.3 A given portfolio Yλ̂ is optimal for given utility function u ∈
U and a set-valued probability Φ if and only if it satisfies the following first-order
optimality conditions:∫

Ω

u′(Yλ̂(ω))Xi(ω)dΦ ⊆
∫

Ω

u′(Yλ̂(ω))Yλ̂(ω)dΦ

for i = 1...N .

Proof. Because Y is stochastically efficient with respect to any probability
Φp, we have ∫

Ω

u′(Yλ̂(ω))(Xi(ω)− Yλ̂(ω))dΦp(ω) ≤ 0, i = 1...N

which is equivalent to∫
Ω

u′(Yλ̂(ω))Xi(ω)dΦp(ω) ≤
∫

Ω

u′(Yλ̂(ω))Yλ̂(ω)dΦp(ω), i = 1...N

12



But now this can be written as

spt

(∫
Ω

u′(Yλ̂(ω))Xi(ω)dΦ, p

)
≤ spt

(∫
Ω

u′(Yλ̂(ω))Yλ̂(ω)dΦ, p

)
for any p ∈ S1, which is equivalent to∫

Ω

u′(Yλ̂(ω))Xi(ω)dΦ ⊆
∫

Ω

u′(Yλ̂(ω))Yλ̂(ω)dΦ

for i = 1...N .
Given two set-valued probabilities Φ,Ξ ∈ P, the Monge-Kantorovich distance

between them is defined as

dMK(Φ,Ξ) = sup
q∈S1

dMK(Φq,Ξq).

Several properties of the space (P,dMK), including its completeness, are pre-
sented in [17, 21]. Define the space P∗ as:

P∗ = {Φ ∈ P : ∃u ∈ U s.t.
∫

Ω

u′(Y (ω))Xi(ω)dΦ ⊆
∫

Ω

u′(Y (ω))Y (ω)dΦ, i = 1...N}

(7.16)
Using this we extend the notion of ineffiency as to the set-valued case as

follows:
SIM(Φ) = inf

Ξ∈P∗
dMK(Φ,Ξ). (7.17)

A given portfolio Y is efficient if SIM(Φ) = 0. We say that it is inefficient
if SIM(Φ) > 0. We can estimate (7.17) by scalarizing along a chosen set of
directions. For finite Ω this leads to a finite set of linear programs.

8 Numerical Example

In this section we present an extended example that illustrates one possible
use of set-valued probability and suggests a way to construct Φ in a practical
context. We take the set of possible events to be finite, Ω = {ω1, ..., ωs}. This
means that in order to construct Φ on Ω we need a finite set of set-valued
probabilities {P1, . . . , Ps}. Again we use Xj , j = 1, 2, . . . , N , as the random
variables which represent the assets.

Suppose that the investment decision must be taken now at time T , and that
historical data ωtj are available for t ∈ [0, T ). In other words there is a complete
knowledge about the different scenarios that have occurred over the continuous
interval [0, T ). We will use a combination of the ideas from Examples 4.3 and
4.4 to construct Φ.

Rather than using a number (a probability) to describes the occurrence
of each scenario over the interval [0, T ), let us instead take 2W different time-
windows (which could be overlapping). Associated with each time-window there
is a direction qw ∈ R2 with ‖qw‖ = 1 and q2w = −q2w+1 (as in Example 4.3). We

13



use the samples from the time-windows to estimate a set of classical probabilities
{p̂1(ωs), p̂

2(ωs), ..., p̂
2W (ωs)}, one set for each ωs ∈ Ω. Then we construct Φ be

setting
Φ(ωs) = co({p̂w(ωs)qw : w = 1, 2, . . . , 2N}).

It is easy to see that Φ(Ω) = co(qw) is the polygon in R2 with vertices qw. This
polygon is a unit ball by our assumption on the directions qw. By increasing
the number of windows W , the polygon converges in the Hausdorff distance
to a circle with radius equal to 1. The distribution induced in each direction
qw by the p̂w(ωs)s gives an estimate of the uncertainty within a given time-
window. In this way we can model any nonstationarity of the uncertainty of the
performance of the assets. Other mechanisms can also be used for constructing
the set-valued probabilities in order to capture different features of the data.

The expected value of the portfolio Yλ =
∑N
j=1 λjXj with respect to a given

utility u ∈ U , is given by

E(u(Yλ)) =

S∑
s=1

u(Yλ(ωs))Φ(ωs).

If we take each direction qw and calculate the support of E(u(Yλ)) along the
direction qw, this leads to

spt(E(u(Yλ)), qw) =

S∑
s=1

u(Yλ(ωs))p
w(ωs).

The notion of stochastic dominance can be checked using the scalarized expected
value with respect to any direction qw. Yλ̂ is stochastically efficient with respect
to Φ if

λ̂ = argmaxλ∈Λ

S∑
s=1

u(Yλ(ωs))p
w(ωs).

for some utility function u ∈ U and for any w = 1, 2, . . . , 2W .

9 Conclusion

In this paper we have extended the notion of stochastic efficiency and ineffi-
ciency to the financial context in which there is lack of information about the
probability of each scenario. These situations can be found when financial data
are missing, or corrupted, or noised, and there is only a partial information
about some historical data. We propose to tackle this problem by means of
the notion of set-valued probability. This object models any sort of possible
vagueness and incompleteness related to the probability of a certain event by
assuming that, instead of a positive number between 0 and 1, there is a compact
and convex set associated with each event. The notion of set-valued probabil-
ity possesses several properties that are similar to those held in the classical
case. This is a first attempt to extend the notion of portfolio efficiency using
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set-valued probabilities and it represents a further development of the material
presented in [22, 23].
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