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Abstract

A Markov chain is a random process which iteratively travels around in its state space with each
transition only depending on the current position and not on the past. When the state space is discrete,
we can think of a Markov chain as a special type of random walk on a directed graph. Although a Markov
chain normally never settles down but keeps moving around, it does usually have a well-defined limiting
behaviour in a statistical sense.

A given finite directed graph can potentially support many different random walks or Markov chains
and each one could have one or more invariant (stationary) distributions. In this paper we explore the
question of characterizing the set of all possible invariant distributions. The answer turns out to be quite
simple and very natural and involves the cycles on the graph.

1 Introduction.

Suppose we take a random walk on the vertices of the graph shown in the left part of Figure 1. We start
at vertex “a” and each time we reach a vertex with a choice of outgoing edges, we choose one according to
the probabilities that label these outgoing edges. As is well-known, this generates a (discrete time) Markov
chain x1, x2, x3, . . . with the vertices of the graph as its state space. Since we start at a we have x1 = a.
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Figure 1: Directed graph with two different probability edge weights.

Because the chain satisfies the hypotheses of the Perron-Frobenius theorem there is a unique (attractive)
invariant distribution

π = (1/18, 5/27, 7/72, 19/216, 5/54, 7/72, 1/18, 19/108, 7/72, 1/18)

which satisfies πP = π where P is the transition matrix for the Markov chain. We notice that πa = πg =
πj = 1/18 and πc = πf = πi = 7/72. Moreover, the ergodic theorem also tells us that (almost surely) for
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any vertex v,

πv = lim
m

1

m
|{1 ≤ i ≤ m : xi = v}| , (1)

where we use |S| to denote the size of a finite set S. The quantity 1
m |{1 ≤ i ≤ m : xi = v}|, as we vary the

vertex v, is the empirical occupation distribution, up to iteration m, generated by the walk. We think of
both the empirical occupation distribution and the limit π either as functions on the vertices or as vectors
with one component for each vertex.

We can imagine changing some of the edge probabilities (at least those for which there is a choice) and
running another random walk on the same directed graph. The right-hand image in Figure 1 shows the same
graph with different edge probabilities. Again there is a unique attractive invariant distribution, this time
given by

π = (3/31, 6/31, 2/31, 4/31, 2/31, 2/31, 3/31, 4/31, 2/31, 3/31)

and again we have that πa = πg = πj and πc = πf = πi, though this time we also have πe = πc.
Clearly as we change these edge weights we will get different invariant distributions. The main question

we explore in this paper is:

Question: What does the set of possible invariant distributions “look” like?

Certainly the structure of the given directed graph influences the possible invariant distribution, but in
what way? We noticed that for both examples above we have the same limiting probabilities for certain
subsets of the vertices. Why these particular vertices? Is this a general feature for every directed graph
(perhaps of some special form)?

We expect the invariant distribution to be a continuous function of the edge probabilities, at least for the
open set of parameter values where there is a unique such invariant distribution. For each vertex, the set of
all possible probability edge weights for its outgoing edges is a compact and convex set. Does this mean that
the set of possible invariant distributions is also a compact and convex set? If so, what is the dimension of
this set and what are the extreme points?

For our example graph, we only have three vertices where there is a choice of probabilities on the outgoing
edges; the general situation is illustrated in Figure 2. The natural constraints on the parameters are

α, β, γ, δ ∈ [0, 1] with α+ β ≤ 1

and these ensure that at each vertex the labels on the outgoing edges all correspond to probabilities. With
this choice of parameters, the vector

1

C
(α, 1, 1− γβδ + βδ − δ, γβδ − βδ + δ, β, 1− γβδ + βδ − δ, α, 1 + βγ − β, 1− γβδ + βδ − δ, α) (2)

is an invariant distribution, with C = (2(1 − γ)δ + γ)β + 3α − 2δ + 5 being a normalizing factor. For this
particular graph all (appropriate) choices of the parameters result in a unique invariant distribution. We
notice that πa = πg = πj as well as πc = πf = πi, as occurred in the two examples above where we made
specific choices of the parameters.

We will divide our discussion into two natural subtopics. First we imagine that we have a somewhat
arbitrary walk on G and find a property that must hold for any “limiting distribution” of the walk. Then,
having this property in hand, we will ask if all the distributions with this property are actually possible
invariant distributions for some Markov chain on G. Amazingly we will discover that the set of “limiting
distributions” for ANY walk on G is no larger than the set of invariant distributions for Markov chains
supported on G (see Theorem 7 and Theorem 8). Thus even though walks generated by Markov chains form
a very small subclass of all possible walks, their sets of “limiting” distributions are the same.
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Figure 2: The example directed graph with general probability edge weights.

Notation and definitions.

All our graphs are finite and directed. An edge is thought of as an ordered pair of vertices with a source and
target and we will write such an edge as u → v. We do allow an edge to go from a vertex to itself but do not
allow more than one edge with a given source and target. A directed walk is a list of vertices v0, v1, . . . , vk
where each vi−1 → vi is in G for i = 1, 2, . . . , k. Note that there is no requirement that the vertices are not
repeated. A directed walk is closed if the walk starts and ends at the same vertex. A (directed) cycle is a
closed walk in which no vertex is repeated. If C = v0, v1, . . . , vk is a cycle then the length of C, denoted |C|,
is equal to k, the number of distinct vertices. (We note that this is not the standard definition, as the length
is usually defined to be the number of edges.)

The directed graph G is strongly connected if for any two vertices u and v, there is a path from u to v.
We note that if G is strongly connected, then every vertex u is contained in a cycle. Roughly we just piece
together the path from u to v with the path from v to u, removing the repeated “side excursions” to get a
set of distinct vertices. Thinking about why this is true is a good warm-up to what we will discuss in Section
2. The strongly connected components of G are the maximal strongly connected subgraphs of G.

Not every directed graph G can support a Markov chain. In order to be able to do so, each vertex in G
has to have at least one outgoing edge (perhaps to itself). Of course a graph where each vertex has only one
outgoing edge is rather simple! As a point of nomenclature, we say that a Markov chain with state space
the vertices of G and transition matrix P is compatible with G if Pu,v > 0 implies u → v is an edge in G.

For the reader who would like to think ahead on the main questions of this discussion, the graph in Figure
3 is a good place to start. What are the possible limiting distributions for this graph? What happens if we
add another chordal edge across the outer cycle? How would this change the possible limiting distributions?

2 From random walks to directed cycles.

In this section we will answer one half of our main question by showing that any “limiting distribution” of
an infinite walk on G has to be of a very special form. For our purposes we say that the walk (xn) on G has
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Figure 3: What are the possible limiting distributions for this graph?

a limiting distribution if the limit

πv = lim
m→∞

1

m
|{1 ≤ i ≤ m : xi = v}|

exists for each vertex v in G; that is, any walk for which the empirical occupation distribution has a limit.
We start with the simplest possible example in order to set the stage for the more formal results which

will follow.

Example 1. Suppose we consider the graph G with two cycles as in Figure 3. The only vertex at which
there is a choice of outgoing edges is the vertex “a”, where we can either take the edge a → b or the edge
a → e. Set Pr(a → b) = p so that Pr(a → e) = 1 − p, where 0 ≤ p ≤ 1. This Markov chain has the
transition matrix

P =



0 p 0 0 1− p 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0


and we can solve that the (unique) invariant distribution is

π =

(
1

3p+ 5
,

p

3p+ 5
,

p

3p+ 5
,

p

3p+ 5
,

1

3p+ 5
,

1

3p+ 5
,

1

3p+ 5
,

1

3p+ 5

)
. (3)

In this case it is not so hard to understand exactly how this limiting behavior arises. For a very large number
m of visits to a, by the law of large numbers we will take the edge a → b approximately p ·m times and the
edge a → e approximately (1− p) ·m times. When we take the a → b edge, we continue around on the cycle

C1 = a, b, c, d, e, f, g, h, a

while each time we take the a → e edge we take the cycle

C2 = a, e, f, g, h, a.

These are obviously the only two cycles in the graph.
On the mth return visit to vertex a, we will have taken cycle C1 approximately pm times and cycle C2

approximately (1−p)m times. This gives a rough total of 8pm steps corresponding to cycle C1 and 5(1−p)m
steps corresponding to C2 for a total of (approximately) N = (3p+ 5)m steps since the first visit to vertex
a. Using this, we have

1

N
|{1 ≤ i ≤ N : xi = v}| ≈

{
p

3p+5 , if v ∈ {b, c, d}
1

3p+5 , if v ∈ {a, e, f, g, h},
(4)
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which is consistent with (3).
Now let Li count the number of times we go around the cycle Ci during the first N ≈ (3p + 5)m steps

of the walk. The proportion of these N steps that are associated with C1 is

L1|C1|
N

≈ 8pm

(3p+ 5)m
=

8p

3p+ 5
(5)

while the proportion for C2 is
L2|C2|
N

≈ 5(1− p)m

(3p+ 5)m
=

5(1− p)

3p+ 5
. (6)

We note that (
1

3p+ 5
,

p

3p+ 5
,

p

3p+ 5
,

p

3p+ 5
,

1

3p+ 5
,

1

3p+ 5
,

1

3p+ 5
,

1

3p+ 5

)
= (7)

8p

3p+ 5

(
1

8
,
1

8
,
1

8
,
1

8
,
1

8
,
1

8
,
1

8
,
1

8

)
+

5(1− p)

3p+ 5

(
1

5
, 0, 0, 0,

1

5
,
1

5
,
1

5
,
1

5

)
. (8)

Examining the two parts of this decomposition we see that(
1

8
,
1

8
,
1

8
,
1

8
,
1

8
,
1

8
,
1

8
,
1

8

)
and

(
1

5
, 0, 0, 0,

1

5
,
1

5
,
1

5
,
1

5

)
(9)

are two “uniform” distributions which are supported on C1 and C2 (respectively). The weights in this
combination (from (7)) are given by the proportions from equations 5 and 6. Note that these weights are
rational functions of p but are not as simple as just being p and 1− p. Of course for this graph the existence
of a relationship like that in (7) is not all that surprising since any walk on G has to “go around” these two
cycles and once on a cycle it has to continue until the end of that cycle.

The two distributions in equation (9) are examples of an important class of distributions on G. Given a
cycle C, the uniform cycle distribution based on C is the probability distribution

θ(v) =

{
1
|C| , if v ∈ C,

0, otherwise
=

1

|C|
1C(v), (10)

where we use 1S to denote the indicator function of a set S. The uniform cycle distributions for a given
directed graph G play a central role in our discussions.

The general situation is, of course, more complicated than what we have just seen in Example 1. However,
the “feel” is the same in that any closed walk must involve cycles in the graph. The next lemma contains
the essential combinatorial insight and is a well-known folklore result. Roughly the lemma states that we
cut-and-paste the cycles together to form any closed walk. The cycles in the decomposition are not disjoint
(the endpoints of one cycle necessarily have to intersect another cycle) but they are almost disjoint. To
describe this situation, given a cycle v0, v1, . . . , vk we say that its truncation is the path v1, v2, . . . , vk.

Lemma 2. Any finite closed directed walk x1, x2, x3, . . . , xm can be decomposed into a collection of directed
cycles so that each xi is in exactly one truncation for each i > 1.

Proof. Since the walk is closed we know that x1 = xm. If these are the only repeated vertices then the walk
is already a directed cycle and there is nothing to prove.

Suppose then that x1 = xm is repeated more than twice and let x1, xn1
, xn2

, . . . , xnℓ
, xm be these repeats.

Then each of x1, x2, . . . , xn1 , and xn1 , xn1+1, . . . , xn2 , and xn2 , xn2+1, . . . , xn3 , etc., are finite closed directed
walks with the further property that the first vertex (which is the same as the last) is not repeated internal
to the walk. Each of these walks is strictly shorter than the original and so we (recursively) repeat the
argument with these.
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Thus we can assume that we have arrived at a single walk x1, x2, . . . , xm where x1 = xm is not repeated
again but some other vertex v is repeated. Letting xn1 , xn2 , . . . , xnℓ

be the occurrences of v in sequence
along the walk, we see that each of

xn1
, xn1+1, xn1+2, . . . , xn2

, and

xn2
, xn2+1, xn2+2, . . . , xn3

, and

...
...

...
...

...
...

...
...

...
...

xnℓ−1
, xnℓ−1+1, xnℓ−1+2, . . . , xnℓ

, and

x1, x2, . . . , xn1
, xnℓ+1, xnℓ+2, . . . , xm

is a closed finite directed walk where the first vertex is not repeated internal to the walk (see Figure 4 for an
illustration of this case with the initial and final segments joined as one of the cycles). Again each of these
walks is strictly shorter than the original and we can recursively repeat the argument with each of these.

After a finite number of these steps we have arrived at a complete decomposition as desired.

a
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c

d e

f

g

hijk

Figure 4: Decomposition of the closed walk a b c d e f c g h i c j k a into cycles.

The decomposition given in the Lemma need not be unique. As an example, consider the closed walk

a, b, c, d, e, f, g, h, i, j, k, d, l, m, h, n, o, k, p, q, h, r, s, d, a

which can be decomposed in the two different ways illustrated in Figure 5. These two different decompositions
can be found by switching which repeated vertex is used to break the overall walk into segments. For the
decomposition in the left-side of Figure 5, we first break into segments at the vertex d, giving the closed
walks

a, b, c, d, a and d, e, f, g, h, i, j, k, d and d, l, m, h, n, o, k, p, q, h, r, s, d

and then decompose each of these as necessary. For the decomposition in the right-side of Figure 5, we first
break into segments at the vertex h, giving the closed walks

a, b, c, d, e, f, g, h, r, s, d, a and h, i, j, k, d, l, m, h and h, n, o, k, p, q, h

then decompose each of these as necessary.
This potential lack of uniqueness will be something that we need to account for but, fortunately, will not

cause any major difficulties and is simple enough to deal with.

Our next step is to use this decomposition of a (finite and closed) walk into cycles to break our infinite
walk into cycles. Of course the way we do this is by using a sequence of decompositions, but we need to make
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Figure 5: Two different cycle decompositions of the same closed walk.

sure that we have convergence of the relative proportion of “time” that is used for each of the cycles. After
this we argue that these limiting proportions (one for each cycle) are related to the limiting distribution for
the walk.

Theorem 3. Let G be a directed graph and x1, x2, . . . , xn, . . . be an infinite walk on G so that

πv = lim
m→∞

1

m
|{1 ≤ i ≤ m : xi = v}| (11)

exists for each vertex v of G. Then there are directed cycles C1, C2, . . . , CN on G and λj ∈ [0, 1] with∑N
j=1 λj = 1 so that π =

∑N
j=1 λj

1
|Cj |1Cj

.

Proof. Let the list of all of the possible directed cycles on G be C1, C2, . . . , CN .
First imagine that the vertex x1 is visited infinitely many times and let n1 = 1 < n2 < n3 < . . .

be the “times” at which this vertex is visited. From Lemma 1, we can decompose each closed walk
xni−1 , xni−1+1, · · · , xni into “almost” disjoint cycles, which necessarily must come from the list C1, C2, . . . , CN .

Let L
(i)
j be the number of times cycle Cj occurs in this decomposition. Furthermore, let L(i)

j = L
(1)
j +L

(2)
j +

· · ·+L
(i)
j , so that L(i)

j is the total number of times cycle Cj occurs in the chosen decomposition of the closed
walk x1, x2, . . . , xni

.
By counting the number of vertices visited, we can see that

L(i)
1 |C1|+ L(i)

2 |C2|+ · · ·+ L(i)
N |CN | = ni − 1

and thus
L(i)
1 |C1|+ L(i)

2 |C2|+ · · ·+ L(i)
N |CN |

ni − 1
= 1

In addition, for each vertex v of the graph G,

|{1 ≤ k < ni : xk = v}| =
N∑
j=1

L(i)
j 1Cj

(v).

Now by assumption we know that

πv = lim
i→∞

1

ni − 1

N∑
j=1

L(i)
j 1Cj

(v) = lim
i→∞

N∑
j=1

(
L(i)
j |Cj |
ni − 1

)
1

|Cj |
1Cj

(v) (12)
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exists. Thus we wish to take

λj = lim
L(i)
j |Cj |
ni − 1

(13)

and so we have to argue that some form of a suitable limit does exist. Unfortunately the limit as written
in (13) with i → ∞ does not have to exist. One reason for this is the amount of choice (because of non-
uniqueness) that is allowed when using Lemma 2. To deal with this issue we notice that the sequence of
vectors

Vi =

(
L(i)
1 |C1|
ni − 1

,
L(i)
2 |C2|
ni − 1

, · · · ,
L(i)
N |CN |
ni − 1

)
is always contained in [0, 1]N , which is a compact set. Thus there is a subsequence which converges to some
point V ∈ [0, 1]N . Since the sum of the components of each Vi is equal to one, the same is true for the limit
V. We take λj to be the jth component of V.

With this choice of λj , we see that π =
∑N

j=1 λj
1

|Cj |1Cj
by using (12) along the appropriate subsequence.

If the vertex x1 is not visited infinitely many times, let xk be the first vertex which is visited infinitely
many times. Clearly the limit in (12) does not depend on x1, x2, . . . , xk−1 and thus we can ignore these and
repeat the previous argument with a re-indexing starting at xk.

The decomposition given in this theorem is valid no matter the source of the walk, as long as the limit
exists. Of course, “most” walks on G would not have a limiting distribution in this sense. However, if the
walk (xn) is generated by a time homogeneous Markov chain on G, then we know that the limit (11) does
exist and will give a stationary distribution for the chain. Of course, depending on the structure of G and the
(fixed) transition probabilities, it is possible that running the walk again might result in a different limit (and
thus another stationary distribution). However, any such limiting distribution will be a convex combination
of uniform cycle distributions.

Other types of random walks on the vertices of G can also result in a walk with a limiting distribution.
This includes time inhomogeneous Markov chains as well as more general random processes where each step
might depend on the entire history.

The support of any walk on G is obviously always connected and “eventually” (that is, after visiting all
those vertices which are visited only finitely many times) it is always strongly connected. Thus we might
guess that the subgraph of G given by supp(π) = {v ∈ G : πv > 0} is always a strongly connected subgraph.
Interestingly this is not necessarily the case!

Example 4. As an example, consider the graph shown in Figure 6. We now construct a walk whose limiting
distribution is uniformly distributed on all the vertices except for the middle one, vertex T . Take the two
cycles

C1 = a, b, c, d, e, f, g, h, a and C2 = A, B, C, D, E, F, G, H, A.

We start the walk at the vertex a. Now we go around C1 once then go through T to A and go around C2

twice and then go back through T to a. This is the first “epoch”. On the next epoch we go around C1 three
times and C2 four times and, in general, on the nth such epoch we go 2n− 1 times around C1 and 2n times
around C2. This defines the walk x1, x2, . . . , xm, . . ..

A couple of things are useful to note. First, during each epoch we visit T twice and each of a and A
exactly one more time than any other vertex in each of their respective cycles (either C1 or C2). Second, at
the end of the nth epoch we have moved a total of n2 times around C1 and a total of n2 + n times around
C2. These observations mean that at the end of the nth epoch we have taken a total of 16n2+12n+1 steps.
Since

8n2

16n2 + 12n+ 1
→ 1/2,

8n2 + 8n

16n2 + 12n+ 1
→ 1/2, and

2n

16n2 + 12n+ 1
→ 0

we know that in the limit the two cycles C1 and C2 are visited the same proportion of the time and T is
visited a vanishingly small proportion of the total time. Furthermore, even though both a and A are visited
more frequently than any of the other vertices, their proportions limit to the same value of 1/16.
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Figure 6: A graph which allows a limiting distribution with disconnected support.

Of course the walk that we have defined for this example cannot be driven by a time homogeneous
Markov chain (though it obviously can be driven by a time inhomogeneous chain). For a walk given by a
time homogeneous chain, the support of the limiting distribution π has to be strongly connected.

3 From directed cycles to Markov chains.

In the previous section we learned that any “limiting distribution” of a walk on G has to be a convex
combination of uniform cycle distributions. Of course this does not mean that every such linear combination
is a limiting distribution of some walk and, in fact, there are usually many of these linear combinations
which cannot be limiting distributions for any walk since their support is disconnected and there is no ”bi-
directional bridge” between the components (imagine the graph in Figure 6 but with the edges a → T and
A → T removed). However, as we will explain in this section, every such linear combination is an invariant
distribution for some Markov chain on G. Our idea for constructing the transition matrix P for the chain
comes directly from the theory of cycle processes as initiated (as far as we can tell) in [7]. This view gives a
very different approach to Markov chains and we encourage the reader to explore it more fully than we can
here with our very small application. A fairly comprehensive discussion can be found in the book [5].

Theorem 5. Suppose that the directed graph G supports a Markov chain. Let π =
∑

j λj
1

|Cj |1Cj for some

directed cycles Cj on G and λj ∈ [0, 1] with
∑

j λj = 1. Then there is a Markov transition matrix P with
state space the vertices of G so that πP = π.

Proof. We use the idea from Section 2 of [7] to define the transition matrix P . With no loss of generality
we assume that the cycles C which are used are all the cycles in G (by setting the appropriate λC = 0 if
necessary). For each cycle C, define the weight wC = λC/|C|. Notice that wC is the amount of probability
that the cycle C contributes (through the uniform cycle distribution 1

|C|1C) to each of its vertices.

If u is a vertex in one of the cycles Cj with λj > 0 and v is any other vertex, we define

Pu,v =

∑
C:u→v∈C

wC∑
D:u∈D

wD

(14)

(the sums are over all the cycles which satisfy the given condition). If u is not in any cycle C with λC > 0,
then we choose any vertex u′ for which u → u′ is in G (we know there is at least one such vertex since G
supports a Markov chain) and define

Pu,v =

{
1, if v = u′

0, if otherwise
.
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It is worthwhile to pause and give some intuition behind equation (14). Since each weight wC is a probability,
the fraction in (14) is a conditional probability. The denominator is the total probability assigned to vertex
u while the numerator is the probability assigned to the edge u → v, and so Pu,v is set to be the probability
of taking the edge u → v given that one is in vertex u.

We first argue that P is in fact a transition matrix. It is clear that Pu,v ≥ 0 from the definition. Fix a
vertex u. If u is not in any cycle with a positive weight, then by definition Pu,u′ = 1 and Pu,v = 0 for v ̸= u′

and so
∑

v Pu,v = 1. Now suppose that u ∈ D and wD > 0. Then

∑
v

Pu,v =
∑
v

∑
C:u→v∈C

wC∑
D:u∈D

wD

=

 1∑
D:u∈D

wD

∑
v

∑
C:u→v∈C

wC =

∑
C:u∈C

wC∑
D:u∈D

wD

= 1

and so again the sum is equal to one. Notice that if Pu,v > 0 then the edge u → v is in G and thus the
transition matrix P is compatible with the directed graph G.

Next we show that πP = π. If v is a vertex with πv > 0, then there is some cycle C which includes v
and for which λC > 0. In this case there is clearly some vertex u where u → v ∈ C and thus Pu,v > 0 and
πu > 0. Then for any such a vertex u we have

πuPu,v =

(∑
C

λC

|C|
1C(u)

) ∑
D:u→v∈D

wD∑
E:u∈E

wE

=

( ∑
C:u∈C

wC

) ∑
D:u→v∈D

wD∑
E:u∈E

wE

=
∑

D:u→v∈D

wD.

Summing over all the vertices u we get

(πP )v =
∑
u

πuPu,v =
∑

u:πu>0

∑
D:u→v∈D

wD =
∑

D:v∈D

wD =
∑
D

λD

|D|
1D(v) = πv.

On the other hand, suppose that πv = 0 and consider another (not necessarily distinct) vertex u. If πu > 0
then there is some cycle C with λC > 0 and u ∈ C. However, in this case Pu,v = 0 since v is not in a cycle
with a positive weight and therefore πuPu,v = 0. If πu = 0 then πuPu,v = 0 regardless of the value of Pu,v.
Thus in any case if πv = 0 we have πuPu,v = 0 for all vertices u and so again

(πP )v =
∑
u

πuPu,v = 0 = πv.

Thus no matter which vertex we choose, we have that (πP )v = πv and so πP = π.

The transition matrix defined in the proof does not have to be irreducible and could often have many
absorbing states. This means that it could have many different linearly independent invariant distributions
including some supported on a single vertex. A simple example of this is illustrated in the left-hand image
in Figure 7. The thick edges indicate the support of the chosen cycles, the thin black edges indicate all the
u → u′ transitions which are used, and the gray edges are those edges which exist in G but are not used in
constructing P . We take

π =
λ1

3
1C1 +

λ2

3
1C2 +

λ3

4
1C3

with λ1 = λ2 = λ3 = 1/3 and the three cycles

C1 = a, b, c and C2 = g, h, i and C3 = g, h, j, i.

This results in the invariant distribution

π = (
1

9
,
1

9
,
1

9
, 0, 0, 0,

7

36
,

7

36
,

7

36
,

1

12
, 0, 0)
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and π having a disconnected support. In addition by using the construction of P from the theorem and the
choice of “extra” edges as indicated in the left-hand image in Figure 7, this also results in P being equal to
(notice that we labelled the rows and columns to help interpret the entries)



a b c d e f g h i j k ℓ

a 0 1 0 0 0 0 0 0 0 0 0 0
b 0 0 1 0 0 0 0 0 0 0 0 0
c 1 0 0 0 0 0 0 0 0 0 0 0
d 0 0 0 0 1 0 0 0 0 0 0 0
e 0 0 0 0 1 0 0 0 0 0 0 0
f 0 0 0 0 0 1 0 0 0 0 0 0
g 0 0 0 0 0 0 0 1 0 0 0 0
h 0 0 0 0 0 0 0 0 4

7
3
7 0 0

i 0 0 0 0 0 0 1 0 0 0 0 0
j 0 0 0 0 0 0 0 0 1 0 0 0
k 0 0 0 0 0 0 0 0 0 0 0 1
ℓ 0 0 0 0 0 0 0 0 0 0 1 0



. (15)

The block diagonal structure of P means that it has several different invariant subspaces; these subspaces
correspond to the components of G (and their unions). Further, P restricted to any of these is also a Markov
transition matrix and thus P also has several different invariant distributions (in fact 5 linearly independent
ones). Among these are 1

31C1 , 1{e}, and 1{f} and all of these are distinct from π.
The right-hand image in Figure 7 illustrates a different choice for the “extra” (i.e., u → u′) transitions.

Here instead of self-loops at some vertices, each vertex that is not in S = C1 ∪C2 ∪C3 is connected to S by
a directed path. From the figure we can see that after at most two steps any walk (no matter its starting
position) will be on S and subsequently remain on S. In terms of the matrix P , this means that αP 2 is
supported on S for any starting distribution α. This choice results in fewer linearly independent invariant
distributions for P . Since supp(π) has two components there are still two linearly independent invariant
distributions, one supported on {a, b, c} and the other supported on {g, h, i, j}.

d

a e

g

f h

i

b k

j

c ℓ

d

a e

g

f h

i

b k

j

c ℓ

Figure 7: Two different choices of the “extra” transitions in constructing P in Theorem 5.

This discussion naturally leads us to the question of what is the best situation that we can hope for?
That is, when can we specify a particular π (as a linear combination of uniform cycle distributions) to be
the unique invariant distribution for P? Well, certainly if supp(π) is disconnected then the components of
this support will be different ergodic components of any chain with π as an invariant distribution and thus
π cannot be unique (as we saw from the simple examples). So, if we want π to be the unique invariant
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distribution for P , the support of π must be connected (which immediately implies that it will be strongly
connected since it is composed of a collection of cycles). In addition, we need some connectivity property of
the graph G to eliminate “islands” which yield more invariant distributions.

Theorem 6. Suppose that G is a directed graph such that for any cycle C and vertex u that is not in any cycle
(including C), there is a directed path from u to C. Let C1, C2, . . . , Ck be cycles such that C1 ∪C2 ∪ · · · ∪Ck

is connected. Then for any distribution π =
∑

i λi
1

|Ci|1Ci
with λi ∈ (0, 1) and

∑
i λi = 1, there is a Markov

transition matrix P with state space the vertices of G so that πP = π and π is the unique such invariant
distribution.

Proof. First we note that πu > 0 for any vertex in any Ci since λi > 0. Thus supp(π) is always C1∪C2∪· · ·∪Ck

for all values of the λi.
We define the transition matrix P in a similar way as we did previously, only modifying the definition

for vertices not in supp(π). So if u is in one of the cycles and v is any other vertex, we define

Pu,v =

∑
C:u→v∈C

wC∑
D:u∈D

wD

(16)

where again wC = λC/|C| and we sum over the chosen cycles.
If every vertex is in supp(π) then we are done. Otherwise, we need to define P for the rest of G. We

do this by inductively assembling all the vertices outside of supp(π) into a forest of directed trees with each
tree leading to some vertex in supp(π) (see the right-hand image in Figure 7 for a small illustration of this).
Once we have this forest the next stage in the proof is to use it to define P .

Thus let u ∈ G \ supp(π). Then by assumption there is some directed path from u to supp(π). Let this
path be u → u1 → u2 → . . . → um → v ∈ supp(π) and set S1 = {u, u1, u2, . . . , um}. If supp(π) ∪ S1 = G we
move on to the stage of defining P , otherwise we continue inductively.

Assuming that supp(π) ∪ S1 does not exhaust all of the vertices in G, let u ∈ G \ (supp(π) ∪ S1). Again
there is a path from u to supp(π) and let this path be u → u1 → u2 → . . . → un → v ∈ supp(π). Now,
it might happen that some ui ∈ S1, in which case we don’t want to take the entire path to v. So, if
ui /∈ S1 for all i = 1, 2, . . . , n, then we set S2 = {u, u1, . . . , un} and note that S1 ∪ S2 is the union of two
disjoint paths. Otherwise suppose that ui is the first vertex on this path that is in S1. In this case we set
S2 = {u, u1, u2, . . . ui−1} and note that S1 ∪ S2 forms a tree rather than a path.

The general induction step starts with having constructed S1, S2, . . . , Sℓ as a set of disjoint paths. Either
G = supp(π)∪ S1 ∪ · · · ∪Sℓ and we move on to the next stage of the proof or we can find a vertex u ∈ G not
in this union. In the later case, there is a path u → u1 → . . . → un → v from u to supp(π). Then either this
path only meets supp(π) ∪ S1 ∪ · · · ∪ Sℓ at the vertex v, in which case we set

Sℓ+1 = {u, u1, . . . , un},

or we set
Sℓ+1 = {u, u1, . . . , ui},

where ui+1 is the first vertex in this path to meet supp(π) ∪ S1 ∪ · · · ∪ Sℓ.
Now we are ready to define P for vertices u /∈ supp(π). Given such a vertex u, we know that u ∈ Si for

some i. Let w be the next vertex along the path that we constructed above (which includes Si as an initial
segment) so that either w ∈ Si or w ∈ Sj for some j < i or w ∈ supp(π). Then for any vertex v ∈ G, we
define

Pu,v =

{
1, if v = w

0 otherwise
.

Showing that P is a Markov transition matrix is just the same as before and so we leave this step to the
reader’s imagination.
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The fact that πP = π is also shown in the same way as in Theorem 5 and so all that is left to argue is
that π is the unique stationary distribution. To see this we first note that for any initial distribution α we
have, by our construction of P , that αP |G| is supported on supp(π) (in fact it would normally take many
fewer than |G| steps for the Markov chain given by P to arrive in one of the given cycles). Thus any invariant
distribution for P must be supported on supp(π). Now since supp(π) is a union of cycles and P respects
the directed edges of G (i.e., P is compatible with G), this means that we can restrict P to the vertices of
these cycles and get a Markov chain. Since supp(π) is strongly connected and finite, this Markov chain is
irreducible and (positively) recurrent and thus has a unique invariant distribution (Section 3.2 of [4] has a
discussion of these points). Thus π is the unique invariant distribution for P .

Summarizing some of what we have discussed we get a rather simple characterization of possible invariant
distributions for Markov chains on a graph.

Theorem 7. Let G be a directed graph. The set of invariant distributions for all possible compatible time
homogeneous Markov chains on subgraphs of G is equal to the set of convex combinations of the uniform
cycle distributions of G.

The story regarding limiting distributions for walks on G can also be easily summarized. The next
theorem follows both from our other results and also from the techniques which we have used (for instance,
modifying Example 4 allows us to construct the desired walk for the converse in part 1). Filling in the details
for the proof of this theorem is also a good exercise for any energetic reader.

Theorem 8. Let G be a directed graph.

1. Any limiting distribution of a walk on G is a convex combination of uniform cycle distributions from
G. Conversely, for any strongly connected subgraph H and any convex combination π of uniform cycle
distributions from H, there is a random walk driven by a time inhomogeneous Markov chain whose
limiting distribution is π.

2. Any limiting distribution of a walk on G driven by a time homogeneous Markov chain has support which
is (almost surely) a strongly connected subgraph. Conversely, if the support of π is strongly connected
and π is a convex combination of uniform cycle distributions on G then there is a random walk on G
driven by a time homogeneous Markov chain whose limiting distribution is π.

Example 9. As a final example, we circle back around to the graph G (from Figure 2) that we started with.
For this graph, it is not so hard to find that the possible cycles are:

C1 = a, g, j, h, d, b, a C2 = a, g, j, h, i, f, c, b, a C3 = b, e, h, d, b

C4 = b, e, h, i, f, c, b C5 = b, e, i, f, c, b C6 = b, h, d, b

C7 = b, h, i, f, c, b.

Using wi = λi/|Ci| (as in the proof of Theorem 5), we can see that π =
∑

i λi1Ci becomes

π = (w1 + w2, w1 + w2 + · · ·+ w7, w2 + w4 + w5 + w7, w1 + w3 + w6, w3 + w4 + w5,

w2 + w4 + w5 + w7, w1 + w2, w1 + w2 + w3 + w4 + w6 + w7, w2 + w4 + w5 + w7, w1 + w2). (17)

Each wi occurs exactly in the entries corresponding to the vertices from the cycle Ci. For instance, w1 occurs
exactly in the entries corresponding to vertices a, b, d, g, h, and j which are precisely the vertices involved
in the cycle C1. Since 1 = λ1 + · · ·+ λ7 = |C1|w1 + |C2|w2 + · · · |C7|w7, π is a probability distribution. The
expression given in (17) for the invariant distribution π is simpler to understand than the one given in (2)!

What about the transition matrix P that we construct (using the same generic choice of the λi) to have
π as an invariant distribution? Rather than give the entire 10× 10 matrix, we instead just look at one row,
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the row corresponding to the vertex b. Since πb from (17) is equal to w1 +w2 + · · ·+w7 and hence not zero,
we use equation (16) to construct the entries of this row. Doing this we get

( b → a b → b b → c b → d b → e b → f b → g b → h b → i b → j
w1 + w2

w1 + · · ·+ w7
0 0 0

w3 + w4 + w5

w1 + · · ·+ w7
0 0

w6 + w7

w1 + · · ·+ w7
0 0

)
, (18)

(we have labelled each entry by its corresponding outgoing edge). The first thing to note is that the
denominators for the non-zero terms are all the same and all equal to πb = w1 + · · ·+ w7. This means that
the entry in the product πP which corresponds to vertex b will just be the sum of the numerators, which
we note is also equal to πb. Looking at the entire matrix and the product πP term-by-term should make it
crystal clear why πP = π and we encourage the energetic reader to do just this!

In terms of the parameters α, β, γ and δ which are used in Figure 2, we have

α =
w1 + w2

w1 + w2 + · · ·+ w7
, β =

w3 + w4 + w5

w1 + w2 + · · ·+ w7
,

γ =
w3 + w4

w3 + w4 + w5
, δ =

w1 + w3 + w6

w1 + w2 + w3 + w4 + w6 + w7
,

in agreement with Theorem 5. The expressions for α and β are also in agreement with the b → a and b → e
entries of P as given in (18). Of course since there are seven wis and only four parameters α, β, γ, and δ
for the Markov chain in Figure 2, we cannot express all the wis only in terms of α, β, γ, and δ. This is not
unexpected since the seven cycles are extreme points of the set of possible invariant distributions and this
set is only four dimensional (more precisely, the affine hull of the set is a four-dimensional hyperplane).

We have two different parameterizations of the Markov chain on G, one using α, β, γ, and δ and the
other using the wis. The first gives a conceptually simple description of the outgoing probabilities at each
vertex while the second gives a more intuitive description of the invariant distribution.

There are many more questions that can be explored. For instance, in Example 9 the parameters α, β,
γ, and δ are from the compact and convex set

S = {(x1, x2) ∈ [0, 1]2 : x1 + x2 ≤ 1} × [0, 1]2

which has twelve extreme points but there are only seven cycles in G and thus only seven extreme points in
the set of possible invariant distributions. Is there a relationship between these different types of “corners” in
this specific case? Is there always a relationship between them? Is there a useful mapping between these two
different compact and convex sets? In general, the extreme points in the set of possible Markov transition
matrices correspond to choosing exactly one outgoing edge at each vertex and so these are also possible to
understand in terms of the structure of the graph, but not necessarily in terms of the cycles.

We could also examine the question of how fast the empirical distribution is approaching the limiting
distribution, particularly when there is only one possible limit. The construction in Theorem 6 gives one
construction of a transition matrix P for a given choice of weights on the uniform cycle distributions.
However, normally several different choices of these weights will give the same convex combination and thus
the same limit. Which choice results in the fastest convergence? Is there an alternate construction which
gives an even faster convergence? The papers [1, 2, 3] all explore variations of this question for special classes
of undirected graphs while [6] instead considers more general directed graphs but using a different measure
of the rate of convergence.

In our particular considerations we start with G and then construct chains based on G and ask about
the possible invariant distributions π. Alternatively, we could start with a desired π and build a chain (via
the transition matrix P ) which will converge to π (of course this implicitly results in some associated graph
G). This is what is done in Markov chain Monte Carlo (MCMC) methods which are used to sample from
a specified π on a given state space Ω (usually Ω is enormous). Often in MCMC the associated graph G
is undirected (since the resulting chain is reversible) and with self-loops at every vertex. Since the uniform
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cycle distribution for a self-loop at a vertex v is a point mass at v, this means that the set of achievable
distributions is as large as possible. But again we can ask, how can we construct “natural” chains (meaning
perhaps having a simple definition of P ) with fast convergence? The Metropolis-Hastings algorithm is one
framework which can often lead to “natural” chains on the state space.

Markov chains on finite graphs have a large number of connections to other areas of mathematics and
an equally large number of applications in computational science. The authors have spent many enjoyable
hours exploring this area of mathematics and welcome others to join them.
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