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Abstract

We report on the implementation of a novel total-variation denoising method
for diffusion spectrum images (DSI). Our method works on the raw signal ob-
tained from dMRI. From the Stejskal-Tanner equation [6], the signals S(x,sk),
1 ≤ k ≤ K, at a given voxel location x may be considered as samplings of a mea-
sure supported on the unit sphere S2 ∈ R3 at locations sk = (θk,φk) ∈ S2 which
quantify the ease/difficulty of diffusion in these directions. We consider the entire
signal S as a measure-valued function in a complete metric space which employs
the Monge-Kantorovich (MK) metric. A total variation (TV) for measures and
measure-valued functions is also defined. A major advance in this paper is the use
of a modification of the standard MK distance which permits rapid computation in
higher dimensions. An added bonus is that this modified metric is differentiable.
The resulting TV-based denoising problem is a convex optimization problem.
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1 Introduction
In [11], a novel framework for the representation of images obtained from diffusion
magnetic resonance imaging (dMRI) [8] and their denoising using total variation was
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presented. In this framework, the (digital) images obtained from dMRI are represented
by measure-valued functions (MVFs): If we let X ⊂ Rn denote the base space, i.e., the
support of an image (e.g., a human brain), then the dMR image is a mapping µ : X →
M (Y ), where Y ⊂Rm, m= 1,2 or 3, denotes an appropriate range space and M (Y ) the
set of Borel probability measures on Y . For example, if Y = S2 = {u ∈R3 | ‖u‖2 = 1},
the unit sphere in R3, then the measure µ(x) ∈M (S2) can characterize the relative
ease or difficulty of diffusion of water molecules in the voxel located at x ∈ X in the
direction s = Ω = (θ ,φ) ∈ S2.

Let us contrast this framework with the conventional way in which images from
dMRI, in particular, high angular diffusion resolution imaging (HARDI), are repre-
sented, namely, as vector-valued functions, i.e., u(x) = (u1(x),u2(x), · · ·uK(x)), com-
posed of signals, uk(x), which are obtained by aligning the linear diffusion gradient
vector with gradient g ∈ R3 in K different directions, sk = (θk,φk) ∈ S2, 1 ≤ k ≤ K.
Most image processing algorithms simply work with such vector-valued functions in
a standard manner, treating them as “cubes”. What we are proposing is to work with
dMRI signals in a manner that attempts to transcend such approaches in which the net
signal u is simply regarded as a “stack” of component signals uk.

In an even earlier paper [13], we examined the use of function-valued mappings
(FVMs) for HARDI. In this case, a HARDI signal is represented by the function-valued
mapping u : X → L2(S2). In all of these works – including this paper – our philosophy
has been, as described in our more recent paper on FVMs and their use in hyperspectral
imaging [17], to investigate if “vector-valued images be better understood, and perhaps
better algorithms be developed, if their range were a space of continuously defined
functions instead of RN .” Indeed, with continued improvements in technology, the
number of components K in dMRI, as well as in hyperspectral imaging for remote
sensing [1], is steadily increasing, essentially approaching the “continuum limit” of
FVM and MVF.

In [11], our total variation-based denoising problem was formulated as follows:
Given a noisy (measure-valued) image µ̃ , find a solution to the following optimization
problem,

min
ν∈F (X)

dF (X)(µ̃,ν)+‖ν‖TV . (1.1)

Here, F (X) denotes an appropriate space of measure-valued functions suppported on
X , with metric dF (X), and ‖ν‖TV denotes the total variation of the measure-valued
function ν ∈F (X). Both of these will be reviewed in the next section.

As discussed in [11], the metric dF (X) requires an appropriate metric between mea-
sures in the space M (Y ). A natural choice is the so-called Monge-Kantorovich (MK)
metric for measures, also to be reviewed below. Unfortunately, the computation of
the traditional MK distance between (discrete) probability measures is computation-
ally inexpensive only in one dimension, i.e., measures on R. The determination of
efficient algorithms to compute MK distances in R2 or S2 and R3 is still an open prob-
lem. In [11], we showed how to solve the optimization problem of denoising using
total variation minimization for the rather artificial – but still mathematically inter-
esting – one-dimensional case, exploiting the fact that the MK distance between two
one-dimensional measures is the L1 distance between their respective cumulative dis-
tribution functions. For the much more difficult higher-dimensional case, as we wrote
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in [11], “an alternative is to replace the Monge-Kantorovich metric on measures with
another metric.” This is indeed one of the major accomplishments of this paper, rep-
resenting a major advance over [11]: We propose a modification of the MK metric
which is computationally inexpensive not only in one dimension but also in higher-
dimensional spaces. An added bonus is that this modified metric is differentiable.
The resulting total variation denoising scheme for measure-valued functions becomes
a convex optimization problem which can be applied to real data, as we show below.

In closing this section, we review a few basic ideas from dMRI which provide the
basis of our measure-valued approach. The reader may recall that in standard magnetic
resonance imaging (MRI), a linear three-dimensional magnetic field is used so that the
MRI signal is a Fourier transform. Inversion of this signal produces an “image” of
the object being examined. In dMRI, a linear magnetic field is also used to define the
direction of diffusion which is being examined. By means of an appropriate pulsing
of a radio-frequency field in a spin-echo measurement, the relative ease/difficulty of
the diffusion of “active” molecules, principally water, is measured. The strength of
the signal obtained at a voxel located at x ∈ X in the direction s ∈ S2 is given by the
followng form of the so-called Stejskal-Tanner equation [8],

S(x,s) = S0(x)exp
(
−bĝT

s D(x)ĝs
)
, (1.2)

where

• S0(x) is the strength of the signal obtained in the absence of diffusion,

• b > 0 is the so-called b-value which is determined by the physics behind the
measurement, i.e., the gyromagnetic ratio, γ , along with the pulsing time T1,

• ĝs is the unit vector with direction s ∈ S2, the direction of the gradient of the
linear diffusion gradient field,

• D(x) is the 3×3 diffusion tensor at x. If the medium is isotropic in a neighbour-
hood of x, then D = dI, where d is a constant (the diffusion coefficient) and I is
the identity matrix.

In HARDI imaging, the signal attenuation can also be modelled as follows [9],

S(x,s) = S0(x)exp((−bd(x,s)) , (1.3)

where d(x,s), the spherical Apparent Diffusion Coefficient (sADC), characterizes the
rate of diffusion in the direction s ∈ S2. The sADC d(x,s) may be viewed as a function
defined on the unit sphere S2, which provides a local map of the rates of diffusion of
water molecules from location x in all (or at least experimentally realizable) directions.
A related quantity is the diffusion orientation probability distribution (dODF) O(x,s),
which is defined to be the probability that a diffusing water molecule at x moves in
direction s [8]. (As is well known – and we simply mention it here to keep our dis-
cussion brief – the method of tractography [2, 12] uses this information to determine
the anatomical structure of white matter in the brain by means of connectomes, vi-
sual representations of neural fibre connections. This information can then be used for
diagnostic purposes [4].)
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In this study, we choose to work with the raw experimental data S(x,sk), 1≤ k≤K,
which is contaminated – usually quite highly – with instrument noise. Our goal is to
denoise this data. From Eqs. (1.2) and (1.3), we see that diffusion attenuates the (theo-
retically noiseless) signal S. For a given x ∈ X , a direction for which d(x,s) (or O(x,s))
is large (small), i.e., a large diffusion rate, corresponds to a small (large) value of the
signal strength S(x,s). This implies that the signal strength S(x,s) is (exponentially) in-
versely related to the diffusion rate at x in the direction s – essentially a measure of the
resistance to diffusion. Even though, for each x ∈ X , the signal S(x,s), considered as a
function of s∈ S2 does not define a measure over S2 (in contrast to the ODF defined ear-
lier), we propose to treat is as a probability measure (after suitable normalization). The
motivation is that measure-based distance functions, such as the Monge-Kantorovich
metric, should work better than simple metrics for functions such as Lp to characterize
differences in information – in this case anisotropic diffusion – that is contained in the
dMRI data. Indeed, there has been interest in the use of metrics derived from infor-
mation theory (e.g., Fisher-Rao metric, von Mises-Fisher distribution) to measure the
overlap/difference between ODFs – see the discussion and references contained in [9]
– but, to the best of our knowledge, no use of such metrics in any denoising algorithm
has yet been performed, apart from [11] and this paper.

2 Theoretical background

2.1 Measure-valued images
As mentioned in Section 1, we let X ⊂ Rn denote our “base space,” the physical space
which contains the object being imaged (e.g., a human brain). Also let Y ⊂ Rm be a
compact range space and M (Y ) the set of probability measures on Borel subsets of Y .
In our particular applications below, m = n = 3, with X = [0,1]3 and Y = S2, the unit
sphere in R3, which represents the set of all directions from any point x ∈ X .

For any two measures α,β ∈M (Y ), the Monge-Kantorovich distance [10] is de-
fined as follows,

dMK(α,β ) = sup
{∫

Y
φ(t)d(α−β )(t) : φ ∈ Lip1(Y )

}
, (2.4)

where, as usual, Lip1(Y ) = { f : Y → R : | f (x)− f (y)| ≤ ‖x− y‖ ∀x,y ∈ Y}. We
mention that the MK distance is well-defined as long as the two measures have the
same total mass. (This implies that, in general, they do not have to be probability
measures.) Furthermore, convergence of a sequence of measures αn ∈M (Y ) in the
Monge-Kantorovich metric is equivalent to weak convergence of αn. Using this fact it
is not difficult to show that (M (Y ),dMK) is a complete metric space.

The Monge-Kantorovich distance (which is special case of the Wasserstein metric
[21]) has its origins in the theory of mass transport and is the solution to the dual of a
linear programming formulation of the mass transportation problem. Because of this
beginning, the MK distance has many useful geometric properties which make it a
natural “extension” of the underlying metric on Y to the set of measures on Y . For
example, dMK(δx,δy) = ‖x− y‖ for point masses δx and δy in Rd situated at x and y,
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respectively (it is straightforward to show that φ(t) = d(x, t) is an optimal function to
use in the definition of the MK distance given in (2.4)) Additionally, for the special
case of two compactly supported probability measures α,β on R, we have (see [20])

dMK(α,β ) =
∫
R
|α(−∞, t]−β (−∞, t]| dt,

(the L1 norm of the difference between their respective cumulative distribution func-
tions). It is this connection between dMK on M (Y ) and d on Y that makes the MK
distance a good choice in any problem where the geometry of their supports is a sig-
nificant factor when comparing two measures.

The set of measure-valued images used in our framework is defined as follows,

F (X) = {µ : X→M (Y ) | x 7→ µ(x)(A) is measurable ∀ Borel subsets A⊆Y}. (2.5)

There are many different and natural choices for a metric on F (X). We will use the
following,

dF (X)(µ,ν) =

(∫
X

dMK(µ(x),ν(x))2 dx
)1/2

, µ,ν ∈F (X) . (2.6)

Because Y is a compact metric space, we have that M (Y ) is compact under the Monge-
Kantorovich distance and therefore complete. This implies that F (X) is complete
when we use (2.6) as the metric. In addition, M (Y ) is convex, which implies that
F (X) is complex. This, in turn, implies that F (X) is a closed convex set. This will be
important for us in the sequel.

2.2 Total variation
The basic idea behind total variation denoising is that adding noise causes the total vari-
ation to increase, so if one can decrease the total variation of an image in a controlled
way this noise can be reduced. Classical total variation regularization procedures have
been found to work very well in removing unwanted detail while still preserving edges
[19]. For a differentiable function f : A ⊂ Rn→ R, the standard total variation is de-
fined as follows,

‖ f‖TV =
∫

X
‖∇ f‖2 dx. (2.7)

Many other variants of total variation exist – see [7] for an overview of some recent
ones.

In [11] we introduced the following notion of total variation for measure-valued
images µ ∈F (X),

‖µ‖TV,MK =
∫

X
‖Dµ‖2 dx =

∫
X

(
n

∑
i=1
|Diµ(x)|2

)1/2

dx , (2.8)

where

|Diµ(x)| := sup
φi∈Lip1(Y )

limsup
hi→0+

1
hi

∫
t∈Y

φi(t) d(µ(x+ êihi)−µ(x))(t) , 1≤ i≤ 3 , (2.9)
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are the analogues of the magnitudes of the directional derivatives of µ at the point
x ∈ X . Since µ(x) is a probability measure on Y for each x, we have that∣∣∣∣∫t∈Y

φi(t) d(µ(x+ êihi)−µ(x))(t)
∣∣∣∣≤ 2diam(Y )

for all x. This means that Eq. (2.8) mainly measures the oscillations of µ as a function
of x (since µ cannot become “unbounded”).

In the computation of the magnitudes in (2.9), the supremum over φi ∈ Lip1(Y )
arises from the use of the Monge-Kantorovich metric on measures. (As a point of
interest, the use of the total variation norm on measures would necessitate the use of a
supremum over φi ∈ L∞(Y ).) If µ(x) = δ f (x) for some differentiable f : X → R, then
one can show that

‖µ‖TV,MK =
∫

X
‖∇ f‖2 dx

and so our definition reduces to the classical one.
If µ(x) has a density ρµ(x, ·) for each x ∈ X , then a standard calculation shows that

Diµ is a signed measure with density ∂ρµ

∂xi
. This is very useful for models where one

fits data with a parametric form of µ(x) for each x.
Our total variation-based denoising algorithm for measure-valued images in F (X)

is then given as follows: Given a noisy image µ̃ (the “observed data”) we seek a solu-
tion to

min
ν∈F (X)

Ψ(ν) := min
ν∈F (X)

{
(1−λ )

(∫
X

dMK(µ̃(x),ν(x))2 dx
)1/2

+λ‖ν‖TV,MK

}
,

(2.10)
where 0 < λ < 1 is the regularization parameter. Since both terms in the objective
function in (2.10) are derived from norms on F (X) the overall objective function is
also a convex function of ν . Since F (X) is convex, this means that there is always a
solution to (2.10) for any λ .

3 Discretization
Our numerical experiments were performed using data from the Stanford Digital Repos-
itory (https://purl.stanford.edu/ng782rw8378) – see also [18]. This data was acquired
from two human subjects and was measured using 150 different directions (the direc-
tions are shown in Figure 1). Our discussion of the discretization below is specific to
this data set but the generalization to another is clear.

For the purposes of computation the domain space of the image, X , is partitioned
into a 3D grid of voxels and the measure-valued function µ gives a (fixed) probability
distribution for each such voxel. Our voxel grid is 81× 106× 76. In addition, the
directions in which diffusion is measured are represented by points on the unit sphere
(which is acting as the support, Y , of the measure µ(x)). Since the data was measured
in 150 different directions, we take a 150-point discretization, G , of the unit sphere
(shown in Figure 1) and assign a weight, wi, j, to each edge (i, j) of this graph according
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to the distance (on the sphere) between the corresponding points. Thus at each voxel,
x, our measure-valued function µ is specified by a probability vector of length 150.

The distance between two distinct points p,q ∈ G is defined as the minimum total
weight of any path between p and q. Because the weights of the edges of G are obtained
by distances in R3, the triangle inequality implies that the distance between adjacent
vertices is just the weight of the edge between them (as we would expect).

Figure 1: 150-point discretization of the sphere

As presented in [14] (see also [15] for another nice viewpoint) a natural way to
interpret the Monge-Kantorovich metric for a finite metric space is to model the metric
space by a graph and use a difference operator as the analogue of the derivative. Recall
that for a graph G , the vertex space, V (G ), and edge space, E(G ), are vectors spaces
of formal linear combinations of vertices and edges, respectively.

The weighted edge-incidence matrix D of G has rows corresponding to the edges
and columns corresponding to the vertices of G . After orienting the edges of G (with
any orientation), the row corresponding to i→ j has a −wi, j in column i and a +wi, j
in column j of the edge-incidence matrix. The kernel of D is easily seen to consist of
constant vectors in V (G ). Then the MK distance between α and β in M (G ) is (see
[14])

dMK(α,β ) := sup{ f · (α−β ) : f ∈V (G ),‖D f‖∞ ≤ 1}. (3.11)

The condition ‖D f‖∞ is the analogue of f ∈ Lip1(Y ) and it is this condition which
underlies the difficulty in computing (3.11).

Modified Monge-Kantorovich metric

The use of the infinity norm causes differentiability problems and so we use a modified
version of (3.11)

dMK,2(α,β ) = sup{ f · (α−β ) : f ∈V (G ),‖D f‖2 ≤ 1}. (3.12)

As usual, the use of the Euclidean norm is used to ensure differentiability. However as
we will see next, this also allows one to obtain a simple formula for this distance.
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As a point of notation, we use A† to denote the pseudo-inverse (or Moore-Penrose
inverse) of a matrix A (see [3]) and is defined and unique for any matrix A (regardless
of size). The defining properties of A† are

1. AA†A = A,

2. A†AA† = A,

3. (AA†)T = AA†, and

4. (A†A)T = A†A.

In particular, these properties imply that AA† is the orthogonal projection onto range(A)
and A†A is the orthogonal projection onto ker(A)⊥ and so ‖AA†‖2 = ‖A†A‖2 = 1. In
addition, ker(A†)⊥ = range(A) and ker(A)⊥ = range(A†).

Proposition 3.1. Let G be a graph with D its weighted edge-adjacency matrix (with
an arbitrary orientation for the edges). Then for any two probability distributions α,β
on the vertices of G , we have

sup{ f · (α−β ) : ‖D f‖2 ≤ 1}= ‖(D†)T (α−β )‖2.

Proof. First we show that

sup{(α−β )· f : f ∈V (G ),‖D f‖2≤ 1}= sup{(α−β )·(D†g) : g∈E(G ),‖DD†g‖2≤ 1}.
(3.13)

(This equality is actually independent of the norm we use (‖ · ‖2 in this case)). One
direction is a simple consequence of the fact that g ∈ E(G ) implies that D†g ∈ V (G )
and thus

sup{(α−β )· f : f ∈V (G ),‖D f‖2≤ 1}≥ sup{(α−β )·(D†g) : g∈E(G ),‖DD†g‖2≤ 1}.

For the converse, we first note that ker(D)⊂V (G ) is the set of constant vectors and so
α −β ∈ ker(D)⊥. Next we note that D†D is the orthogonal projection onto ker(D)⊥

and thus f −D†D f ∈ (ker(D)⊥)⊥ = ker(D). This means (α − β ) · ( f −D†D f ) = 0
or (α −β ) · f = (α −β ) · (D†D f ). Thus if f ∈ V (G ) setting g = D f gives (α −β ) ·
(D†g) = (α − β ) · f and ‖D f‖2 ≤ 1 implies that ‖DD†g‖2 ≤ ‖DD†‖2‖D f‖2 ≤ 1 as
well. This gives the other direction.

Our next step is to show that

sup{(α−β )·(D†g) : g∈E(G ),‖DD†g‖2≤ 1}= sup{(α−β )·(D†g) : g∈E(G ),‖g‖2≤ 1}.
(3.14)

Again one direction (the ≤ direction) is simple, this time being the consequence of
‖DD†‖2 = 1. For the other direction, we note that since D†DD† = D†, we have

D†(g−DD†g) = D†g−D†DD†g = 0.

Thus if ‖DD†g‖2 ≤ 1, we set h = DD†g so ‖h‖2 ≤ 1 and (α−β ) · (D†g) = (α−β ) ·
(D†h), which gives the other inequality.
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Finally, with these two equalities we have

sup{(α−β ) · f : f ∈V (G ),‖D f‖2 ≤ 1}= sup{(α−β ) · (D†g) : g ∈V (G ),‖g‖2 ≤ 1}
= sup{(D†)T (α−β ) ·g : g ∈V (G ),‖g‖2 ≤ 1}
= ‖(D†)T (α−β )‖2,

as desired.

As a result, we will use the metric

dMK,2(α,β ) = ‖(D†)T (α−β )‖2, (3.15)

for a modified and differentiable version of the discrete MK distance. Notice that
(3.15) is no longer a linear programming problem but a simple computation. Using
this metric, our discretized version of the objective function in (2.10) is given by(1−λ )

(
∑

i∈voxels
dMK,2(µ̃(i),ν(i))2 dx

)1/2

+λ‖ν‖TV,MK

 . (3.16)

In addition, our discretized version of (2.10) is also convex, so it can be optimized by
many standard methods.

4 Numerical experiments
We performed (using a mixture of MATLAB and python) preliminary numerical ex-
periments both with small images and large images. The small images were extracted
from the large ones and were used extensively in tuning the optimization process (in
particular the weight λ ).

For our preliminary experiments we used a variant of gradient descent with a care-
ful control of the step size. Since we are using a modified Monge-Kantorovich distance,
it is important that the total mass at each voxel remains constant throughout the algo-
rithm (otherwise the MK distance is not defined). Conveniently the gradient of the
objective function in (2.10) is a zero-sum vector (as we show below) for each voxel
and thus when we subtract any multiple of the gradient from the current state (dMRI
image) of the process the total mass at each voxel is preserved.

The step size control functioned both to ensure a decreasing objective function (as
is usual with step size control for gradient descent) but also to ensure that none of the
components at any voxel became negative (and thus no longer represented a probability
distribution). Specifically, if we are using

νn+1 = νn− τ ∇Ψ

(where Ψ is the objective function from (3.16)) we must insure that no component of
νn+1 is negative by choosing a small enough value for the multiplier τ . However, in
practice very quickly this process requires the value of τ to be smaller than 10−9 and
so the steps were too small to influence the objective function appreciably.
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In order to deal with this issue we implemented two changes to the standard gra-
dient descent. Both of these modify ∇Ψ, but make different “local” modifications at
different voxels. The first method is to allow the value of τ to depend on the voxel.
We implemented this change by scaling ∇Ψ differently at each voxel. Having done
this, if the required scaling τi at voxel i is “too small’, we simply set ∇Ψ restricted to
this voxel to be zero. Using these two methods we obtain ∇̂Ψ, a modification to the
actual gradient. It is not hard to see that ∇Ψ · ∇̂Ψ≥ 0 and so−∇̂Ψ is also a “downhill”
direction for Ψ.

Each image has about 98 million data values and so the optimization algorithm runs
slowly (about two iterations per hour on a workstation). We discuss the details of the
objective function in the next section.

Discretized objective function
We now give some details about the two parts of the discrete version of (2.10) as given
in (3.16). The first term of the objective function is(

∑
I
‖(D†)T (µ̃I−νI)‖2

2

)1/2

=

(
∑

I
(µ̃I−νI)

T D†(D†)T (µ̃I−νI)

)1/2

, (4.17)

where the sum is over all the voxels I. The second part of the objective function is
written in terms of the magnitudes of the directional derivatives in the three spatial
directions,(

∑
I
‖D†T

(νI−νI′)‖2
2 +‖D†T

(νI−νI′′)‖2
2 +‖D†T

(νI−νI′′′)‖2
2

)1/2

. (4.18)

To understand this equation, we have to see how we compute the total variation. For
a function f : R3 → R one can use something like

∫
‖∇ f (x)‖ dx so we will use a

finite-difference approximation to the spatial directional derivatives. For a voxel I =
(a,b,c) let the voxel I′ = (a− 1,b,c) and I′′ = (a,b− 1,c) and I′′′ = (a,b,c− 1)).
Then a very rough approximation to the gradient of a measure-valued function µ is
〈µI−µI′ ,µI−µI′′ ,µI−µI′′′〉. We compute the MK norm of this difference at each
voxel.

Now we will show that the gradient of our objective function is a zero-sum vector
for each voxel. To do this we first find expressions for the partial derivatives of the
objective function. Let ξ be some parameter on which ν depends (e.g., one component
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of ν). For the first term (4.17) in the objective function, we have

∂

∂ξ

(
∑

I
‖(D†)T (µ̃I−νI)‖2

2

)1/2

=
1
2

(
∑

I
(µ̃I−νI)

T D†(D†)T (µ̃I−νI)

)−1/2[
∑

I
2

∂

∂ξ
(µ̃I−νI)

T D†(D†)T (µ̃I−νI)

]

=

−∑
I

(
∂νI

∂ξ

)T

D†(D†)T (µ̃I−νI)√
∑I ‖D†T

(µ̃I−νI)‖2
2

. (4.19)

For the gradient we take ξ to be one component of ν at one voxel, say component i

at voxel I. Doing this causes
∂νI

∂ξ
to be a vector with 150 components all of which

are zero except with a 1 in component i. Thus when we multiply D†(D†)T (µ̃I − νI)

by
∂νI

∂ξ
we are simply extracting the ith component of D†(D†)T (µ̃I − νI). When

done for all components i, the result is simply the vector D†(D†)T (µ̃I − νI) itself.
Now, range(D†) = ker(D)⊥ ⊂ V (G ) is the subspace of zero-sum vectors and thus
D†(D†)T (µ̃I −νI) is a zero-sum vector. Since this is true for each voxel I, this shows
that the gradient of the first term (4.17) is zero-sum for each voxel.

Moving to the second term (4.18), we have

∂

∂ξ
‖ν‖TV,MK =

∑
I

∑
J=I′,I′′,I′′′

∂

∂ξ

(
(νI−νJ)

T D†(D†)T (νI−νJ)
)

2

(
∑

I
‖(D†)T (νI−νI′)‖2

2 +‖(D†)T (νI−νI′′)‖2
2 +‖(D†)T (νI−νI′′′)‖2

2

)1/2

=

∑
I

∑
J=I′,I′′,I′′′

(
∂νI

∂ξ
− ∂νJ

∂ξ

)T

D†(D†)T (νI−νJ)

‖ν‖TV,MK
. (4.20)

For a given voxel I, there are the six parts(
∂νI

∂ξ

)T

D†(D†)T (νI−νJ) and −
(

∂νJ

∂ξ

)T

D†(D†)T (νI−νJ) for J = I′, I′′, I′′.

The same argument used for the first term of the objective function shows that each of
these results in a zero-sum vector and thus their sum will as well. Since this is true for
each voxel, it is true for the entire gradient as well. Thus for any λ the gradient of our
objective function (3.16) is a zero-sum vector at each voxel I.
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Numerical results
Figure 2 shows a typical run of 1000 iterations for a small image. The top plot shows
how the objective function decreases (as it should) while the bottom plot shows the evo-
lution of the distance to the original noise-free image. As expected, even the original
noise-free image is transformed by the denoising algorithm.

Figure 3 shows a representative “slice” through the image data for one of the “large”
images. A plane of voxels was chosen and then for each voxel in this plane the value
of one component of the 150-component probability distribution is shown. The images
have been contrast enhanced since the original data values are all very close to zero. In
these images only 40 iterations of gradient descent were performed.

Figure 2: Convergence for small image: objective (top), error (bottom)

12



Figure 3: Representative slice through the image: original (top), 10% noise (middle),
denoised (bottom)

5 Concluding Remarks
In this paper, we consider the raw signal obtained from dMRI as defining a measure-
valued function. From the Stejskal-Tanner equation, at each voxel x ∈ X , the signals
S(x,sk), 1 ≤ k ≤ K, are considered to be samplings of a measure supported on the
unit sphere S2. This measure characterizes the ease/difficulty of diffusion of water
molecules from x. A modified version of the classical Monge-Kantorovich metric – a
metric between measures – is employed in an effort to characterize the differences in
information in a better way than standard Lp-based metrics. The total variation of a
measure-valued function is also defined. This mathematical framework sets up a TV-
based denoising algorithm which is a convex optimization problem. Some preliminary
results to raw data have been presented.
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