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Abstract. In this paper we present a total variation denoising problem for probability measures using the set of fixed point proba-
bility measures of iterated function systems with probabilities IFSP. By means of the Collage Theorem for contraction mappings,
we provide an upper bound for this problem that can be solved by determining a set of probabilities.

Introduction

In image analysis, the notion of total variation (TV) or total variation regularization has applications in noise removal.
The basic idea relies on the fact that that signals with spurious detail have high total variation or, more mathematically,
the integral of the absolute gradient of the signal is high. It is well known that the process of reducing the total variation
of the signal removes unwanted detail whilst preserving important details such as edges (see [11]). The total variation
(TV) of a differentiable greyscale image f : X ⊂ Rn → R is defined as follows,

‖ f ‖TV =

∫
X
‖∇ f (x)‖2 dx, (1)

that is, the integral of the ‖ · ‖2 norm of the gradient. Other definitions of total variation are available in the literature
– the reader is referred to [4] for an overview of many of the most recently used ones.

A typical TV-based denoising problem will have the following form: Given a noisy image (function) f ∗, solve
the following optimization problem,

min
f∈F

[
‖ f − f ∗‖ + λ ‖ f ‖TV

]
,

where F denotes an approprate space of functions representing the images. The first term in the objective function is
the the so-called data fitting term, which imposes the condition that the denoised image f should be close to the noisy
data f ∗. (Usually, the L2 norm is employed.) The second term is the TV regularization term – higher values of the
regularization parameter λ > 0 will, in general, yield solutions f (λ) with lower TV.

In this paper, we examine the idea of TV-based denoising applied to probability measures instead of functions.
The motivation comes from ongoing work which suggests that measure-valued approaches may be quite appropriate in
the study of diffusion spectral imaging (DSI), a particular variation of diffusion magnetic resonance imaging (dMRI).
In [7], we examined the following formulation of total variation denoising for measure-valued images: Given a noisy
image measure µ∗ (the “observed data”), find a solution to the following optimization problem,

min
µ∈Y

dY (µ∗, µ) + λ‖µ‖TV . (2)



Here, we examine a variation of this denoising problem for probability measures which employs iterated function
systems with probabilities (IFSP). (The natural connection between IFSP and probability measures [5] will be briefly
reviewed below.) In [8], we proposed a TV-based denoising method for functions using iterated function systems on
functions (IFSM). As such, this paper may be viewed as a kind of measure-based analog of [8].

Metrics on probability measures

In what follows we let (X, d) be a compact subset of Rp (tipically X = [0, 1]p) and B be the Borel σ-algebra defined on
X. In addition, letM(X) denote the set of Borel probability measures on X. There are many different metrics that can
be defined onM(X), often with the goal of metrizing the weak topology. Here we shall use two of the most commonly
employed ones, namely, the total variation norm and the Monge-Kantorovich metric. We mention at the outset that
these two metrics yield different topologies – the topology given by the total variation is stronger than the one given
by the Monge-Kantorovich metric.

Total variation norm

Given a finite signed measure µ, as usual we define the total variation of µ by

‖µ‖TV = sup
A∈B
|µ(A)|.

It is not difficult to see that this gives a norm on the (Banach) space, ca(X), of all finite signed Borel measures on
X (see page 160 of [3]). Moreover, (ca(X), ‖ · ‖TV ) is the Banach dual space to (C(X), ‖ · ‖∞): This goes a long way
towards ensuring the importance of ‖‖TV as a norm on measures.

The induced total variation distance is given as dTV (µ, ν) = ‖µ − ν‖TV . SinceM(X) ⊂ ca(X) is dTV -closed, it is
also complete under dTV .

If a measure µ is absolutely continuous with density f , then it is not hard to see that

‖µ‖TV =

∫
X
| f (x)| dx. (3)

Monge-Kantorovich metric

The Monge-Kantorovich metric came out of considerations in the area of mass transportation problems [12, 5]. In our
setting, it metrizes the weak* topology on the space of probability measures (weak* when ca(X) is viewed as the dual
space to C(X)).

Definition 1. The Monge-Kantorovich distance onM(X) is defined as follows:

dMK(µ, ν) = sup
‖ f ‖Lip≤1

[∫
X

f dµ −
∫

X
f dν

]
where ‖ f ‖Lip is the Lipschitz constant of a function f : X → R.

It is simple to show that this definition gives a pseudo-metric onM(X) and a bit harder to show that it gives a
metric. Since dMK gives the weak* topology onM(X), this automatically implies that the topology it defines is weaker
than that defined by dTV . SinceM(X) is weak* compact in ca(X), it is compact (and thus complete) under the dMK
metric.

In the special case where X ⊂ R, then it is known that (see [1, 2])

dMK(µ, ν) =

∫
X
|Fµ(x) − Fν(x)| dx, (4)

where Fµ (respectively Fν) is the CDF of µ (respectively ν).



IFS Markov Operator onM(X)

Given a set W of N IFS contraction maps wi : X → X, an (N + 1)-vector of probabilities p = (p0, ..., pN),
∑N

i=0 pi = 1,
and a probability measure s ∈ M, we construct the following IFSP Markov operator with condensation (see [5]),

MW,p,s µ =

N∑
i=1

piµ · w−1
i + p0s.

If p0 = 0, then the above definition collapses to the usual definition of an IFSP Markov operator. The action of MW,p,s µ
on a set A ∈ F is then defined as

MW,p,s µ(A) =

N∑
i=1

piµ(w−1
i (A)) + p0s(A).

Proposition 1. We have ‖MW,p,s(µ) − MW,p,s(ν)‖TV ≤
(∑N

i=1 pi

)
‖µ − ν‖TV = (1 − p0)‖µ − ν‖TV .

Proof. Since µ(w−1
i (wi(A))) = µ(A), it is easy to see that ‖µ‖TV = ‖µ ◦ w−1

i ‖TV for all i. Thus we have

‖MW,p,s(µ) − MW,p,s(ν)‖TV ≤

∥∥∥∥∥∥∥
n∑

i=1

pi(µ ◦ w−1
i − ν ◦ w−1

i )

∥∥∥∥∥∥∥
≤

n∑
i=1

pi‖µ ◦ w−1
i − ν ◦ w−1

i ‖TV

=

 n∑
i=1

pi

 ‖µ − ν‖TV ,

as claimed. � �

Corollary 2. If p0 > 0 then the Markov operator with condensation MW,p,s has a unique fixed point µ̄ ∈ M.

The operator MW,p,s is also contractive with respect to the Monge-Kantorovich distance This is easy to show
using the same arguments as the standard Markov operator without condensation (see [5, Theorem 2.60]). We let
0 ≤ cMK < 1 denote the contraction factor of MW,p,s with respect to the dMK metric.

Proposition 3. The Markov operator with condensation MW,p,s is contractive with respect to the Monge-Kantorovich
distance with

dMK(MW,p,sµ,MW,p,sν) ≤ (max
i

ci)dMK(µ, ν),

where ci is the contractivity of wi.

We now investigate an inverse problem involving the fixed point, µ, of MW,p,s. In these situations it is difficult to
obtain estimates like ‖µ − ν‖TV or dMK(µ, ν), where ν is some fixed target measure. A standard technique to avoid this
difficulty is to use the Collage Theorem. This theorem is a simple but very useful consequence of Banach’s contraction
principle (see [5, Theorem 2.6]).

Theorem 4 (Collage Theorem). Let (X, d) be a complete metric space and f : X → X be a contraction with
contractivity c < 1 and x̄ be its unique fixed point. Then, for any y ∈ X, we have

d(y, x̄) ≤
d(y, f (y))

1 − c
.

The benefit is that we replace the difficult (or impossible) d(y, x̄) distance with the simpler d(y, f (y)) distance.



The Total Variation Denoising Problem

Given a set W of N IFS contraction maps wi : X → X, an (N + 1)-vector of probabilities p = (p0, ..., pN),
∑N

i=0 pi = 1,
and a probability measure s ∈ M, define the feasible set,

F =
{
µ ∈ M : MW,p,s µ = µ

}
,

that is, the set of all possible fixed points of MW,p,s for a given choice of the triple (W,p, s).
Now given a noisy measure µ∗, and an ideal de-noised measure ν, the Total Variation (TV) denoising problem

for probability measures consists of finding the solution to the constrained minimization problem

min
µ∈F

[
dMK(µ∗, µ) + ξdTV (µ, ν)

]
,

subject to the constraint
MW,p,s µ = µ ,

where ξ > 0 is a trade-off parameter. From the Collage Theorem, for a fixed condensation measure s, and a fixed
system of maps W, an upper bound for the above problem can be found by solving the problem,

min
p

1
1 − cMK

[
dMK(µ∗,MW,p,sµ

∗)
]

+
ξ

1 − cTV

[
dTV (MW,p,sν, ν)

]
, (5)

where cMK = maxi=1...N ci is the contractivity factor of the operator MW,p,s w.r.t. the Monge Kantorovich distance, and
cTV =

∑N
i=1 pi is the contractivity factor of the operator MW,p,s w.r.t. the Total Variation distance.

As a simple example, consider X = [0, 1], the IFS contraction maps w1(x) = x/2, w2(x) = x/2 + 1/2, the measure
s with density fs, and the probability p0 > 0 fixed. Then if θ ∈ M has density fθ, it is easy to see that MW,p,sθ has
density

fMW,p,sθ = p0 fs + 2p1 fθ ◦ w−1
1 + 2p2 fθ ◦ w−1

2 .

Furthermore, if θ has CDF Fθ, then MW,p,sθ has CDF given by

FMW,p,sθ(x) =

p0Fs(x) + p1Fθ(2x), if x ≤ 1/2,
p0Fs(x) + p1 + p2Fθ(2x − 1), if 1/2 ≤ x ≤ 1.

With these observations and equations (3) and (4), the minimization problem (5) becomes the non-differentiable but
convex problem

min
p1+p2=1−p0

2
∫ 1

0
|Fµ∗(x) − FMW,p,sµ∗(x)| dx +

ξ

p0

∫ 1

0
| fν(x) − fMW,p,sν(x)| dx.

(Notice that the contraction factor for MW,p,s in the Monge-Kantorovich metric is 1/2 and the contraction factor for
MW,p,s in the total variation norm is 1 − p0.)

Conclusions

In this paper we have presented an innovative approach to deal with the problem of total variational denoising of
probability measures using iterated function systems with probabilities. It has been shown that this problem can be
approximated by means of the Collage Theorem and then solved by determining the set of probabilities pi. This is
a first attempt at solving this problem: future works will include a computational analysis of the above optimization
model with different ideal de-noised measures.
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