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Abstract

Efficiency plays a crucial role in portfolio optimization. This notion
is formulated by means of stochastic optimization techniques. Very
often this problem is subject to partial uncertainty or incomplete in-
formation on the probability distribution and on the preferences ex-
pressed by means of the utility function. In this case both the objective
function and the underlying probability measure are not known with
precision. To address this kind of issues, we propose to model the
notion of incomplete information by means of set-valued analysis and,
therefore, we propose two different extensions of the classical model. In
the first one we rely on the notion of set-valued function while the sec-
ond one utilizes the notion of set-valued probability. For both of them
we investigate stability properties. These results are also linked to the
notion of robustness of the aforementioned problem. Finally we apply
the obtained results to portfolio theory and stochastic dominance.

Keywords: Portfolio Optimization, Stochastic Dominance, Portfolio Effi-
ciency, Partial Uncertainty, Incomplete Information, Set-Valued Analysis.

1 Introduction

Portfolio optimization and selection is a classical problem in Operations
Research and Finance and it has been applied to different areas including
financial markets, technological change, strategic investments, and many
others.
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Portfolio optimization provides to the investor a quantitative approach
which will allow to select the best available investment plan. The first
mathematical formulation and model in portfolio optimization goes back to
the pioneering paper by Markowitz [30].

The efficient portfolio theory based on Markowitz’s model is widely used
in the construction of easy-to-read performance indicators. However, this
model has been criticized for the strong assumptions imposed on the in-
vestor’s utility function or the expected return distribution.

The notion of stochastic dominance, instead, considers the structure and
behavior of the whole investment return distribution, and not only the mean
and the variance (i.e. the first two moments) like in traditional Markowitz-
based financial indexes. Recently, it has played a crucial role in financial
performance analysis and risk evaluation.

Several papers in the literature have compared the mean-variance ap-
proach vs the stochastic dominance one with the aim of determining if there
are any differences between the efficient sets of investments provided by both
approaches [32, 33, 29, 26, 27].

In this paper we investigate the notion of portfolio efficiency with partial
uncertainty and imprecise information. To cope with the presence of partial
knowledge on the probability distribution and on the utility function we
rely on techniques of set-valued analysis. Roughly speaking, to model the
lack of information on the utility function we replace it with a set-valued
mapping. The same philosophy is applied to the partial uncertainty on
the underlying probability: the probability of a given event - which is in
the classical meaning a positive number in [0, 1] - is replaced by a positive
set-valued map with compact and convex values in Rd.

Our approach is also related to existing techniques to deal with vague,
imprecise, inconsistent and uncertain knowledge such as fuzzy set theory, ev-
idence theory, and rough set theory (see, for instance, [48] and the references
therein).

More in details, we propose two extensions. In the first one, we replace
the single-valued utility function with a set-valued utility function. We sup-
pose that the utility is not longer a real number but a subset of vectors which
models the roughness and the lack of certainty on the objective function.
The corresponding stochastic optimization model is a set-valued problem
by construction. In the second extension, instead, we use the notion of set-
valued probability to model the level of imprecision related to the underlying
probability measure. The notion of set-valued probability is an extension
of the notion of imprecise probability which has been widely investigated in
the literature as it represents a quite natural way to extend the traditional
notion of probability. While in the traditional approach associated with each
event there is a number in [0, 1], in the theory of imprecise improbability this
is replaced by a subset [pl, pu], where pl and pu are the so-called lower and
upper probabilities. The notion of imprecise probability has been used in
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several contexts and different applications have been proposed as well. Some
classical examples in this theory are the Dempster-Shafer evidence theory
([10]), the coherent lower prevision theory ([45]), probability bound analysis
([13]), F-probability ([47]), the possibility theory ([12]). The definition of
set-valued measures was first introduced for the needs of mathematical eco-
nomics in [44] where it was used to study equilibria in exchange economies
in which coalitions correspond to measurable sets and are the primary eco-
nomic units (see also [9]). Moreover, the study of set-valued measures has
been developed extensively because of its applications in other fields such
as optimization and optimal control.

The notion of portfolio efficiency presented in this paper relies on set
ordering. We study stability properties of the solution under perturbations
on the utility function and on the underlying probability. We also provide
generalized optimality conditions. The results in this paper also extend
those proved in [6, 24, 23].

The paper proceeds as follows. Section 2 recalls the basic notion of
portfolio optimization and stochastic dominance.

Section 3 is devoted to basic concepts about set-valued functions and set-
valued probabilities. Section 4 is devoted to the extension of the notion of
portfolio efficiency with incomplete information and partial uncertainty and,
in particular, to the extension of Proposition 1 which states the optimality
conditions portfolio efficiency (see [34]).

In Section 5 for a general stochastic optimization problem we present
optimality conditions and stability results. In particular, in Subsection 5.1
we investigate optimality conditions and stability properties under pertur-
bation of the utility (w.r.t. the uniform convergence) and of the underlying
probability (w.r.t. the Monge-Kantorovich metric). In Subsection 5.2, we
generalize the previous results to the case of set-valued utility. In Subsection
5.3 we consider the case in which the expectation is taken with respect to a
set-valued probability and extend the previous results to this case as well.
We apply these general results to the portfolio efficiency problem. In par-
ticular as a corollary of the optimality conditions for the general stochastic
optimization problem, we prove the aforementioned extension of Proposition
1.

Section 6 presents some managerial insights and discusses some practical
implementation of the method. Section 7 concludes the paper.

2 Basics on Portfolio Efficiency

As discussed in the previous section, the notion of stochastic dominance
plays a crucial role to identify the optimal portfolio allocation. In the sequel
of this section, we recall some classical definitions and results in stochastic
dominance theory.
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IfXj is a random variable which represents the possible assets, a portfolio
is a linear combination of them, namely Yλ =

∑
i λiXi, where λ is the vector

that describes the asset allocation and it belongs to the set Λ defined as:

Λ = {λ ∈ RN
+ :

N∑
i=1

λi = 1}.

The following three definitions are classical [42, 43] and provide an or-
dering between random variables.

Definition 1. Given two random variables X1 and X2 we say that X1 dom-
inates X2 (in the first order) if

P [X1 ≥ x] ≥ P [X2 ≥ x] (1)

for all x, and for some x, P [X1 ≥ x] > P [X2 ≥ x].

Definition 2. Given two random variables X1 and X2 we say that X1 dom-
inates X2 (in the second order) if

E[u(X1)] ≥ E[u(X2)] (2)

for all nondecreasing and concave utility functions u.

Definition 3. Given two random variables X1 and X2, we say that X1

dominates X2 (in the third order) if and only if E[u(X1)] ≥ E[u(X2)] for
all non-decreasing, concave utility functions u that are ”’positively skewed”’
(i.e. with positive third derivative).

These are important concepts in portfolio theory and they have been
explored in several papers including [34, 35, 36, 28, 15] in which the authors
also provide statistical tests for stochastic dominance.

In the sequel of this paper we focus on the notion of second-order stochas-
tic dominance. The following definition recalls stochastic portfolio efficiency.

Definition 4. Given λ̂ ∈ Λ, we say that a portfolio Yλ̂ is stochastically
efficient with respect to the probability ϕ and the utility u ∈ U if

λ̂ = argmaxλ∈ΛEϕ(u(Yλ)) = argmaxλ∈Λ

∫
Ω
u(Yλ(ω))dϕ(ω) (3)

= argmaxλ∈Λ

∫
Ω
u

(∑
i

λiXi(ω)

)
dϕ(ω) (4)

(5)

where

U = {u : R → R, u is non-decreasing and concave} (6)
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More precisely, Yλ̂ is stochastically efficient with respect to the probability ϕ
and the utility u ∈ U if

Eϕ(u(Yλ̂)) ≥ Eϕ(u(Yλ)) (7)

for any λ ∈ Λ.

In other words, once a probability ϕ and the utility u ∈ U are fixed,
a portfolio Yλ̂ is stochastically efficient if λ̂ is solution to the optimization
problem:

min
λ∈Λ

Eϕ(u(Yλ)). (8)

The following result was proved in the case of a discrete probability
space in [34]. The extension to the case of a generic probability space is
quite straightforward.

Proposition 1. A given portfolio Yλ̂ is stochastically efficient with respect
to the probability ϕ and the utility u ∈ U if and only if it obeys the following
first-order optimality conditions:

Eϕ

(
u′(Yλ̂(·))

[
Xi(·)− Yλ̂(·)

])
=

∫
Ω
u′(Yλ̂(ω))

[
Xi(ω)− Yλ̂(ω))

]
dϕ(ω) ≤ 0

(9)
for all i = 1...N .

3 Mathematical Preliminaries

In this section we recall some basic properties of set-valued functions and
set-valued probabilities.

3.1 Set-Valued Functions

In this section we present some basic facts related to sets and set-valued
functions. More details can be found in [2, 3]. In the sequel we denote by K
the collection of all nonempty compact and convex subsets of Rd. Addition
of sets and scalar multiplication (λ ∈ R) for K are defined by

A+B := {a+ b : a ∈ A, b ∈ B} and λA = {λa : a ∈ A}.

For A ∈ K, we say that A is nonnegative (A ≥ 0) if 0 ∈ A. Given A ∈ K
the support function spt(·, A) : Rd → R is defined by

spt(p,A) = sup{p · a : a ∈ A}.

The support function completely defines A since

A =
⋂

∥p∥=1

{x : x · p ≤ spt(p,A)}. (10)
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Furthermore, A ⊆ B if and only if spt(p,A) ≤ spt(p,B) for any p ∈ S1 =
{p : ∥p∥ = 1}. The function spt(·, ·) also satisfies the following properties:
For all λ ≥ 0 and A,B ∈ K,

spt(p, λA+B) = λspt(p,A) + spt(p,B), spt(p,−B) = spt(−p,B)

but it is usually the case that spt(p,−A) ̸= −spt(p,A).
For any A ∈ K, we can also define the norm of A using the support

function as follows

∥A∥ := sup{∥x∥ : x ∈ A} = sup
∥p∥=1

spt(p,A).

This definition satisfies all of the classical properties of a norm. There is
a nice connection between the support function and the Hausdorff distance
[7]: for A,B ∈ K

dH(A,B) = sup
∥p∥=1

|spt(p,A)− spt(p,B)|.

It is also the case that both addition and scalar multiplication on K are
continuous in the Hausdorff distance.

A set A ⊂ Rd is balanced if λA ⊆ A for all |λ| ≤ 1. For us a unit ball in
Rd is any balanced set B ∈ K with 0 ∈ int(B). Any such unit ball defines a
norm on Rd via the Minkowski functional

∥x∥ = sup{λ ≥ 0 : λx ∈ B}.

Given a unit ball B, the dual sphere is defined as

S∗ = {y : sup{y · x : x ∈ B} = 1} ⊂ Rd

and is also a nonempty compact set. Notice that since B is compact, for
each y ∈ S∗, there is some x ∈ B with y · x = 1.

A set-valued function or multifunction taking compact and convex values
is a map from Rn to K. For a given set-valued function f : Rn → K and
measure µ, we can define the integral of f with respect to µ as an element
of K via support functions using the property (see [3])

spt

(
q,

∫
Rn

f(x) dµ(x)

)
=

∫
Rn

spt(q, f(x)) dµ(x),

which defines the set as in (10). For more results on set-valued analysis see
[3].

A set-valued map f : Rn → K is upper semicontinuous (u.s.c.) at x0 ∈ X
when for every ε > 0 there exists a neighborhood U of x0 such that

f(x) ⊆ f(x0) + εB
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for every x ∈ U (here B denotes the closed unit ball in Rd). A set-valued
map f is lower semicontinuous (l.s.c.) at x0 ∈ X when for every ε > 0 there
exists a neighborhood U of x0 such that

f(x) ∩ ( f(x0) + εB ) ̸= ∅

for every x ∈ U . A set-valued map f is Hausdorff continuous at x0 ∈ X
when it is both u.s.c. and l.s.c. at x0. This is equivalent to saying that for
every ε > 0 there exists a neighborhood U of x0 such that

dH(f(x), f(x0)) < ε

for every x ∈ U . If the previous definitions holds for every x0 ∈ X, we will
say that f is respectively upper semicontinuous, lower semicontinuous and
continuous.

Given a compact subset Θ of Rn and a set-valued function f : Θ ⊆ Rn → K,
consider the optimization problem

max
x∈Θ

f(x). (11)

We say that x0 ∈ Θ is a global maximizer for f over Θ if for any x ∈ Θ we
have f(x) ⊆ f(x0). Notice that we are using the natural ordering of sets
given by inclusion. Let us now recall that a set-valued function f : R → K
is non decreasing if

f(x) ⊆ f(y) (12)

for x, y ∈ R, x ≤ y. A set-valued function f : Rn → K is concave if

tf(x) + (1− t)f(y) ⊆ f(tx+ (1− t)y) (13)

for x, y ∈ Rn, t ∈ [0, 1]. Using the support function, we have that f is
concave if and only if the function spt(p, f(x)) is concave for all ∥p∥ = 1.

3.2 Set-valued probabilities

In the sequel let us define by X a compact and convex subset of Rn, (Ω, d) be
a compact metric space, f : X×Ω → R be Borel measurable and continuous
in x (we also sometimes will assume that it is jointly continuous or even
Lipschitz). Ω models the set of all possible outcomes associated with a
random parameter.

We now discuss the space of all possible probability measures supported
on the set Ω. Let B be the Borel σ-algebra on Ω, then a probability measure
on (Ω,B) with values in [0, 1] is a function ϕ : B → [0, 1] such that ϕ(∅) = 0,
ϕ(Ω) = 1, and

ϕ

(⋃
i

Ai

)
=
∑
i

ϕ(Ai) (14)
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for any sequence of disjoint sets Ai ∈ B. LetM be the space of all probability
measures defined on Ω. The Monge-Kantorovich metric on M is defined as

dM (ϕ1, ϕ2) = sup
f∈Lip1(Ω)

{∫
Ω
f(x)dϕ1(x)−

∫
Ω
f(x)dϕ2(x)

}
(15)

where Lip1(Ω) is the set of all Lipschitz functions defined on Ω with Lipschitz
constant equal to 1 and ϕ1 and ϕ2 are in M. It is well known that the metric
space (M, dM ) is compact. In the special case where Ω ⊂ R, then it is known
that

dM (ϕ1, ϕ2) =

∫
Ω
|Fϕ1(x)− Fϕ2(x)| dx, (16)

where Fϕ1 (respectively Fϕ2) is the CDF of ϕ1 (respectively ϕ2).
For any ϕ ∈ M, let us consider the stochastic optimization problem (see

e.g. [38]):

max
x∈X

∫
Ω
f(x, ω)dϕ(ω) := max

x∈X
Eϕ (f(x, ·)) . (17)

We now provide only basic definitions and those properties of set-valued
probabilities that we will need; for more information and proofs see [1, 2, 3,
16, 17, 18, 37, 39]. The notion of set-valued probability extends the classical
notion of probability. Within this context we suppose that the probability
of a certain event is no longer a positive number but a set: this definition
can be very useful to model situations in which there is total ignorance
and absolutely no information about the system or subject under study.
The classical axioms of probability theory are extended by means of the
Minkowski sum and the inclusion order. This notion also extends the no-
tion of imprecise probability [45] to the case of probabilities taking convex
and compact-valued images. Within the imprecise probability formulation
a single probability specification ϕ is replaced with an interval specifica-
tion by means of lower and upper probabilities, namely ϕ− and ϕ+, and
for a given event A we have that ϕ(A) is replaced by the positive interval
[ϕ−(A), ϕ+(A)] ⊂ [0, 1]. The definition of imprecise probability recast in the
framework of set-valued probability theory by assuming that the probability
of a given event A is the interval [−ϕ−(A), ϕ+(A)] ⊂ [−1, 1].

Given a set Ω and a σ-algebra A on Ω a probability measure on (Ω,A)
with values in [0, 1] is a function ϕ : A → [0, 1] such that ϕ(∅) = 0, ϕ(Ω) = 1,
and

ϕ

(⋃
i

Ai

)
=
∑
i

ϕ(Ai) (18)

for any sequence of disjoint sets Ai ∈ A. Similarly one can define the notion
of vector-valued probability measure on (Ω,A). This is a function Φ : A →
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[0, 1]d, where d ∈ N, such that Φ(∅) = (0, ..., 0) ∈ Rs, Φ(Ω) = (1, ..., 1) ∈ Rd,
and

Φ

(⋃
i

Ai

)
=
∑
i

Φ(Ai) (19)

This last property is meant to be satisfied componentwise. Note that with
this definition a vector-valued probability measure is simply a vector of
probability measures.

Given a set Ω and a σ-algebra A on Ω a set-valued measure or multimeasure
on (Ω,A) with values in K is a function Φ : A → K such that Φ(∅) = {0}
and

Φ

(⋃
i

Ai

)
=
∑
i

Φ(Ai) (20)

for any sequence of disjoint sets Ai ∈ A. The right side of (20) is the infinite
Minkowski sum defined as∑

i

Ki =

{∑
i

ki : ki ∈ Ki,
∑
i

|ki| < ∞

}
.

One could also define the infinite sum by requiring the right side of (20) to
converge in the Hausdorff distance.

We will say that a multimeasure Φ is nonnegative, and we write Φ(A) ≥ 0, if
0 ∈ Φ(A) for all A. Nonnegative multimeasures are monotone: if A ⊆ B then
Φ(A) = {0} + Φ(A) ⊆ Φ(B \ A) + Φ(A) = Φ(B). This makes nonnegative
multimeasures a nice generalization of (nonnegative) scalar measures.

The total variation of a multimeasure Φ is defined in the usual way as

|Φ|(A) = sup
∑
i

∥Φ(Ai)∥,

where the supremum is taken over all finite measurable partitions of A ∈ A.
The set-function |Φ| defined in this fashion is a (nonnegative and scalar)
measure on Ω. If |Φ|(Ω) < ∞ then Φ is of bounded variation.

If Φ is a multimeasure and p ∈ Rd then the scalarization Φp defined by

Φp(A) = spt(p,Φ(A)) (21)

is a signed measure on Ω in general and is a probability measure if Φ is a
probability multimeasure.

One simple way to construct a multimeasure is by integrating a set-valued
density function f with respect to a measure µ:

Φ(A) =

∫
A
f(x) dµ(x). (22)
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There are several approaches to defining this integral (see [3]). If the
set-valued function f is nonnegative (that is, 0 ∈ f(x) for all x), then the
resulting multimeasure will also be nonnegative. In addition, if 0 ≤ f(x) ≤
g(x) and Φ is a positive multimeasure, then∫

f(x) dΦ(x) ⊆
∫

g(x) dΦ(x),

the convexity of the values of Φ is crucial.

Definition 5. Let B ∈ K be a unit ball. A B set-valued probability or
probability multimeasure (or pmm) on (Ω,A) is a nonnegative multimeasure
Φ with Φ(Ω) = B.

A pmm Φ defines a parameterized family, Φp for p ∈ S∗, of probability
measures. However, in general Φp and Φq are related and the relationship
can be quite complicated (the main constraint on this relationship is that
p 7→ Φp(A) is convex).

We can construct a pmm by integrating an appropriate density f against
a finite measure µ, as in (22). For this to define a pmm we need f to satisfy
some properties. The simplest conditions are to assume that f(x) ∈ K is
balanced for each x, ∥f(x)∥ ≤ C for some C and all x, and

0 ∈ int

∫
Ω
f(x) dµ = int(B).

Given a specific B, it is difficult to find a density f which will give B; it is
better to use the integral of the density to define B.

As usual, by a random variable on (Ω,A) we mean a Borel measurable
function X : Ω → R and its expectation with respect to a pmm Φ is defined
in the usual way as

EΦ(X) =

∫
Ω
X(ω) dΦ(ω). (23)

This integral can be constructed using support functions (that is, using
the Φp) and each part of the decomposition X = X+−X− separately (since
support functions work best with nonnegative scalars); see [18] for another
approach. Since 0 ∈ Φ(A) for each A, it is easy to see that 0 ∈ EΦ(X) as
well.

Classical results in probability theory as the strong law of Large Num-
bers, the Glivenko-Cantelli, and the Central Limit Theorems can be ex-
tended to pmm. More details on this topic can be found in [24].

We will denote by M the space of all probability multimeasures defined
on Ω. The extended Monge-Kantorovich distance between Φ1,Φ2 ∈ M, as
defined in [22], is:

dM(Φ1,Φ2) = sup
∥p∥=1

dM (Φp
1,Φ

p
2) (24)
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where dM is the classical Monge-Kantorovich distance between two proba-
bilities (as given in (15)).

4 Portfolio Efficiency with Incomplete Informa-
tion and Partial Uncertainty

In the sequel we present two extensions of the notion of portfolio efficiency.
The first case illustrates an extension of the notion of stochastic efficiency
by means of the notion of set-valued utility while the second one considers
the notion of set-valued probability.

4.1 Case 1: Incomplete information on the utility u

Let Xj be random variables which represent the possible assets and Yλ =∑
i λiXi is a portfolio with λ ∈ Λ where we have

Λ =

{
λ ∈ RN

+ :
N∑
i=1

λi = 1

}
.

By using the notion of the expected value of a set-valued function, one can
define the notion of stochastic portfolio efficiency that is based on the notion
of stochastic dominance.

Definition 6. Given λ̂ ∈ Λ, we say that Yλ̂ is stochastically efficient with
respect to the probability ϕ and the set-valued utility u ∈ U if

λ̂ = argmaxλ∈ΛEϕ(u(Yλ)) = argmaxλ∈Λ

∫
Ω
u(Yλ(ω))dϕ(ω) (25)

where

U = {u : R → Hcc(Rd), u is non-decreasing and concave} (26)

and Hcc(Rd) is the collection of all nonempty compact intervals of Rd. More
precisely, Yλ̂ is stochastically efficient with respect to the probability ϕ and
the set-valued utility u ∈ U if

Eϕ(u(Yλ)) ⊆ Eϕ(u(Yλ̂)) (27)

for any λ ∈ Λ.

Let us also notice that if u ∈ U then up(x) := spt(p, u(x)) is a non-
decreasing and concave function for any p ∈ S1. This implies that if Yλ̂ is
stochastically efficient with respect to the probability ϕ and the set-valued
utility u ∈ U then Yλ̂ is stochastically efficient with respect to the probability
ϕ and the utility function up for any p ∈ S1. The converse of this implication
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is also true and fully characterizes the notion of stochastic efficiency with
respect to a set-valued utility.

It is possible to extend the results presented in [34] for a classical utility
function and in the case of a discrete probability space. The next section
will be devoted to them.

We can now extend the notion of stochastic inefficiency presented in
[25, 35]. First let us introduce the space

M∗ = {ξ ∈ M : ∃u ∈ U such that∫
Ω
spt(p, u(·))′(Yλ̂(ω))(Xi(ω)− Yλ̂(ω))dξ(ω) ≤ 0, i = 1, . . . , N,∀p ∈ S1}

and, for any probability ϕ ∈ M, let us define the function

SIM(ϕ) = min
ξ∈M∗

dM (ξ, ϕ) = d′M (ϕ,M∗).

In other words SIM(ϕ) is the distance point-to-set between ϕ and the set
M∗. A given portfolio Yλ is stochastically efficient relative to a given ϕ ∈ M
if and only if SIM(ϕ) = 0. If SIM(ϕ) > 0 we say the portfolio Y is
stochastically inefficient.

4.2 Case 2: Partial uncertainty on the probability distribu-
tion

Similarly to the example presented in the previous section, let Xj be random
variables which represent the possible assets and Yλ =

∑
i λiXi is a portfolio

with λ ∈ Λ with the same definition of Λ as before. By using the notion
of the expected value with respect to a set-valued probability Φ, one can
define the notion of stochastic portfolio efficiency with respect to a set-
valued probability.

Definition 7. Given λ̂ ∈ Λ, we say that Yλ̂ is stochastically efficient with
respect to the set-valued probability Φ if

λ̂ = argmaxλ∈ΛEΦ(u(Yλ)) = argmaxλ∈Λ

∫
Ω
u(Yλ(ω))dΦ(ω) (28)

for some utility function u ∈ U where

U = {u : R → R, u is non-decreasing and concave}. (29)

This corresponds to solve, for any u ∈ U , the optimization problem:

max
λ∈Λ

EΦ(u(Yλ)). (30)

This is similar to the problem presented in the previous section, but the
expected value is now calculated with respect to a set-valued probability Φ.
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Even in this case it is possible to generalize the results presented in
[34]. And it is also possible to introduce the notion of stochastic inefficiency.
Given the following space as follows:

M∗ = {Ξ ∈ M : ∃u ∈ U such that∫
Ω
u′(Yλ̂(ω))(Xi(ω)− Yλ̂(ω))dΞ

p(ω) ≤ 0, i = 1...N, ∀p ∈ S1}.

and, for any set-valued probability Φ ∈ M, let us define the function

SIM(Φ) = min
Ξ∈M∗

dM(Ξ,Φ) = d′M(Φ,M∗)

In other words SIM(Φ) is the distance point-to-set between ϕ and the set
M∗. A given portfolio Yλ is stochastically efficient relative to a given Φ ∈ M
if and only if SIM(Φ) = 0. If SIM(Φ) > 0 we say the portfolio Y is
stochastically inefficient.

5 Optimality and Stability Results

In this section we consider a general setting as follows. Find the optimal
solution to the following problem:

max
x∈X

Eϕ (f(x, ·)) (31)

where X is the feasible set (usually assumed to be compact). We assume
that (Ω,F , ϕ) is a probability space, f : X×Ω → R is the objective function
depending on different possible scenarios ω ∈ Ω, and Eϕ is the expected
value of f(x, ·) with respect to a probability measure ϕ. Let us recall that
Ω is the space of events, F is a σ-algebra of events defined on Ω, and ϕ is
a probability measure defined over F . Of course if we replace f(x, ω) with
u (
∑

i λiXi(ω)) and X with the compact set:

Λ =

{
λ ∈ RN

+ :
N∑
i=1

λi = 1

}

then (31) reduces to the portfolio efficiency problem.
The motivation for considering such an extended formulation is quite

simple: very often, in order to determine stability results of a certain math-
ematical problem, it is necessary to embed it into a more general family
or into a more general space and use this setting to establish convergence
results by outer approximations.

The results presented in the following subsections apply to this extended
formulation.
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5.1 The case of single-valued functions and single-valued prob-
abilities

In this section we investigate the case in which the uncertainty is described
by means of a classical probability measure. Our focus is then to investigate
thye main properties of the problem

max
x∈X

Eϕ (f(x, ·)) (32)

where ϕ ∈ M is a classical probability measure. These properties will be
extended in the next sections to the case of set valued functions f and set-
valued probabilities.
In order to analyze this problem we need to make some additional assump-
tions on f , in particular on its dependence on ω ∈ Ω.

Definition 8. The function f : X×Ω → R is lower semi-equicontinuous if
for all x ∈ X and ϵ > 0 there is a δ > 0 so that f(y, ω) > f(x, ω)− ϵ for all
y ∈ Bδ(x) and all ω. We say that f is upper semi-equicontinuous if −f is
lower semi-equicontinuous.

The following observation is simple but is important enough for us to
record.

Proposition 2. Let f : X × Ω → R be such that {f(·, ω) : ω ∈ Ω} is an
upper (lower) semi-equicontinuous family and ∥f(x, ·)∥L1(Ω,ϕ) ≤ K for all
x ∈ X. Then G(x) = Eϕ(f(x, ω)) is upper (lower) semi-continuous.

Linearity of the expectation implies that if f is concave in x for all ω ∈ Ω
then G(x) = Eϕ(f(x, ·)) is also a concave map. The following results explore
the convergence of the above model under perturbation of the integrand f
and the probability measure ϕ and their implications on the convergence of
sequences of maximizers.

Proposition 3. Let fn, f : X × Ω → R with fn(x, ·) → f(x, ·) in L1(Ω, ϕ)
uniformly over x ∈ X. Then Gn(x) = Eϕ(fn(x, ·)) uniformly converges to
G(x) = Eϕ(f(x, ·)) in the sup distance. In particular, if fn → f uniformly
over X× Ω then the conclusion holds.

Proof. The proof is quite straightforward and it follows from the definitions
and the fact that ϕ is a probability (and so finite) measure. ■

Proposition 4. Let fn : X×Ω → R be a sequence such that fn(x, ·) → f(x, ·)
in L1(Ω, ϕ) uniformly over x ∈ X. If for each n, xn ∈ X is a maximizer of
Gn(x) = Eϕ(fn(x, ·)), then for every subsequence xnk

converging to a point
x̄ it holds that x̄ is a maximizer for G(x) .

14



Proof. Since xn is a maximizer of G, uniform convergence of Gn to G (by
Proposition 3) implies that

G(x̄) = lim
k→+∞

Gnk
(xnk

) ≥ lim
k→+∞

Gxk
(x) = Gnk

(x), ∀x ∈ X (33)

that is x̄ is a maximizer of G. ■

The proofs of the next results are straightforward adaptations of stan-
dard arguments and thus we omit them.

Proposition 5. Suppose that ϕn ∈ M converge to ϕ in the Monge-Kantorovich
distance. Suppose further that f is uniformly Lipscthitz in ω (i.e., |f(x, ω1)−
f(x, ω2)| ≤ Kd(ω1, ω2) for all x ∈ X). Then Gn → G(x) uniformly over X.
Furthermore, if xn is a maximizer for Gn over X and xnk

→ x̄ then x̄ is a
maximizer for G over X.

Proposition 6. Suppose that ϕn → ϕ in the Monge-Kantorovich distance
and fn → f uniformly on X × Ω with |f(x, ω1) − f(x, ω2)| ≤ Kd(ω1, ω2)
for all x ∈ X. Then Gn → G uniformly on X. Furthermore, if xn is a
maximizer for Gn over X and xnk

→ x̄ then x̄ is a maximizer for G over X.

5.2 The case of Set-Valued Functions

Now we extend problem (32) to the case in which f is a set-valued function.
We investigate the main properties of the problem

max
x∈X

Eϕ (f(x, ·)) (34)

where ϕ ∈ M is a classical probability measure and f : X×Ω → K is a set-
valued function taking compact and convex values. This problem can be seen
as a way of taking into account the fact that exact values of function f are
not known. In the following of this section let us define G(x) := Eϕ (f(x, ·))
and Gp(x) := spt (p,Eϕ (f(x, ·))) = Eϕ (spt(p, f(x, ·))).
First we state continuity and concavity properties for Problem (34).

Proposition 7. Suppose that f(x, ω) ⊆ K for all (x, ω) ∈ X × Ω. Then
G(x) ⊆ K for all x ∈ X and consequently Gp(x) is bounded by ∥K∥ for any
x ∈ X and any p ∈ S1.

Proof. The inclusion f(x, ω) ⊆ K implies that spt(p, f(x, ω)) ≤ spt(p,K)
for any p ∈ S1 and thus

spt(p,G(x)) =

∫
Ω
spt(p, f(x, ω)) dϕ(ω) ≤

∫
Ω
spt(p,K) dϕ(ω) = spt(p,K)

which implies G(x) ⊆ K. ■

15



The extension of the definitions of upper and lower semi-equicontinuous
(Definition 8) to a multifunction f : X× Ω → K is straightforward. We use
them in the following result.

Proposition 8. Suppose that the set-valued map f is upper (lower) semi-
equicontinuous. Then the map x → spt(p, f(x, ω)) is upper (lower) semi-
continuous for all p ∈ S1. Furthermore, both Gp(x) and G(x) are u.s.c.
(l.s.c.) as well. Finally, if f is both upper and lower semi-equicontinuous
then Gp is continuous for all p ∈ S1 and G is Hausdorff continuous.

Proof. Since f is upper semi-equicontinuous at x0, for every ϵ > 0 there
exists a neighborhood U of x0 such that

f(x) ⊆ f(x0) + ϵB

for every x ∈ U and for every ω ∈ Ω (where B ⊂ Rd is the unit ball). It
follows

spt(p, f(x, ω)) ≤ spt(p, f(x0, ω)) + ϵ

for every x ∈ U and ω ∈ Ω, that is the supprt function is upper semi-
equicontinuous at x0. This implies that

Gp(x) ≤ Gp(x0) + ϵ

and that
G(x) ⊆ G(x0) + ϵB

for every x ∈ U , which concludes the proof. ■

Proposition 9. Suppose that f takes polyhedral values, that is there exist
vectors v1,v2, . . . ,vm and fi : X× Ω → R+, i = 1..m, such that

f(x, ω) = conv{vifi(x, ω)} (35)

where convA denotes the convex hull of the set A. Suppose that x̄ ∈ X is
such that

x̄ = argmaxx∈XEϕ (fi(x, ·)) , for all i = 1, 2, . . . ,m. (36)

Then x̄ is the maximizer of G over X and

G(x̄) = conv{viEϕ (fi(x̄, ·))} (37)

Proof. The proof is straightforward and it follows by noticing that G(x) ⊂
G(x0) if and only if Gvi(x) ≤ Gvi(x0) for any x ∈ X and any i = 1, . . . ,m.

■

Proposition 10. Let f(x, ω) be a concave set-valued function w.r.t. x for
all ω. Then Gp(x) = Eϕ (spt(p, f(x, ·))) is a concave function for every p
with ∥p∥ = 1 and G(x) = Eϕ (f(x, ·)) is a concave set-valued map.
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Proof. Concavity of f in the first variable x gives

spt(p, f(tx+ (1− t)y, ω) ≥ tspt(p, f(x, ω)) + (1− t)spt(p, f(y, ω))

for every t ∈ [0, 1] and x, y ∈ X. Integrating we get

Gp(tx+ (1− t)y) ≥ tGp(x) + (1− t)Gp(y)

i.e. concavity of Gp and consequently concavity of the set-valued map G. ■

Next result states optimality conditions for Problem (34).

Proposition 11. Let f be a set-valued map and suppose that x0 ∈ X is a
maximizer of G(x) = Eϕ (f(x, ·)) over X. Suppose that for any p such that
∥p∥ = 1 we have that x → spt(p, f(x, ω)) is C1 for all ω. Then

Eϕ(∇spt(p, f(x, ·))d) ≤ 0 (38)

for any direction d ∈ KX(x0) = {d ∈ Rn : ∃t̄ > 0, x0 + td ∈ X,∀t ∈ [0, t̄]}
and for any p such that ∥p∥ = 1. If furthermore f is concave, and condition
(38) holds, then x0 is a maximizer for problem (34).

Proof. As x0 ∈ X is a maximizer with respect to the inclusion ordering, we
get that

G(x) ⊆ G(x0) (39)

for any x ∈ X. This implies that x0 ∈ X is a maximizer for the map
Gp(x) = spt(p,G(x)) = Eϕ (p, spt(f(x, ·))). The regularity hypothesis on
spt(p, f(x, ω)) allows to conclude thatGp is C1 as well. A classical optimality
condition implies then that ∇Gp(x)d ≥ 0 for any internal direction d ∈
KX(x0) which turns out to imply that

Eϕ(∇spt(p, f(x0, ·))d) ≤ 0 (40)

for any p ∈ S1 and d ∈ KX(x0). The proof of the second part is immediate
since Gp(x) are concave.

■

The following corollary can be easily deduced from the above result by
replacing the function f(x, ω) with u (

∑
i λiXi(ω)). It also extends the re-

sults presented in [34] for a classical utility function and in the case of a
discrete probability space.

Corollary 1. A given portfolio Yλ̂ is stochastically efficient with respect to
the probability ϕ and the set-valued utility u ∈ U if and only if it obeys the
following first-order optimality conditions:

Eϕ

(
spt(p, u(·))′(Yλ̂(·))

[
Xi(·)− Yλ̂(·))

])
≤ 0 (41)

for all i = 1...N and for any p ∈ S1 provided that spt(p, u(·))′(Yλ̂(·)) exists.
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The next results are direct analogues of Propositions 3 - 6 from section
5.1. The technique of using the scalarizations makes the proofs of the set-
valued results very similar to those for the scalar-valued cases.

Proposition 12. Let fn, f : X × Ω → K with Eϕ(dH(fn(x, ·), f(x, ·))) → 0
uniformly over x ∈ X. Then the set-valued maps Gn converge uniformly over
X to G in the Hausdorff distance. In particular, if fn → f in the Hausdorff
distance uniformly over X× Ω then the conclusion holds.

Proof. We have, for p ∈ S1 and all x ∈ X that

|Gp
n(x)−Gp(x)| =

∣∣∣∣∫
Ω
spt(p, fn(x, ω))− spt(p, f(x, ω)) dϕ(ω)

∣∣∣∣
≤
∫
Ω
|spt(p, fn(x, ω))− spt(p, f(x, ω))| dϕ(ω)

≤ Eϕ(dH(fn(x, ω), f(x, ω))).

Hence
sup
x∈X

dH(Gn(x), G(x)) = sup
x∈X

sup
p∈S1

|Gp
n(x)−Gp(x)| =

sup
p∈S1

sup
x∈X

|Gp
n(x)−Gp(x)| → 0

■

Proposition 13. Let fn be a sequence of multifunctions such that we have
Eϕ(dH(fn(x, ·), f(x, ·))) → 0 uniformly over x ∈ X. If xn ∈ X is a maximiz-
ers of Gn(x), for every subsequence xnk

converging to a point x̄ it holds that
x̄ is a maximizer for G(x) .

Proof. Since xn is a maximizer of Gp
n for every p ∈ S1, uniform convergence

of fn to f gives,

Gp(x̄) = lim
k→+∞

Gp
nk
(xnk

) ≥ lim
k→+∞

Gp
xk
(x) = Gp

nk
(x), ∀x ∈ X (42)

that is x̄ is a maximizer of Gp for every p ∈ S1 and hence a maximizer of
G. ■

Proposition 14. Suppose that ϕn → ϕ in the Monge-Kantorovich distance
and dH(f(ω1, x), f(ω2, x)) ≤ Kd(ω1, ω2) for all x ∈ X. Then Gn(x) con-
verges to G(x) in the Hausdorff distance uniformly over X. Furthermore, if
xn is a maximizer for Gn over X and xnk

→ x̄, then x̄ is a maximizer for
G over X.
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Proof. Computing, we have for any x ∈ X:

dH(Gn(x), G(x)) = sup
∥p∥=1

|spt(p,Gn(x))− spt(p,G(x))|

≤ sup
∥p∥=1

∫
Ω
|spt(p, f(x, ω))| d(ϕn(ω)− ϕ(ω)) (43)

≤ KdM (ϕn, ϕ) → 0, (44)

and this implies the thesis. ■

Proposition 15. Suppose that ϕn → ϕ in the Monge-Kantorovich distance
and dH(fn(x, ω), f(x, ω)) → 0 uniformly over X× Ω. Then Gn → G in the
Hausdorff distance uniformly over X. Furthermore, if xn is a maximizer for
Gn over X and xnk

→ x̄ then x̄ is a maximizer for G over X.

Proof. Omitted as immediate. ■

By replacing f(x, ω) with u (
∑

i λiXi(ω)) from the previous results one
can prove stability properties for the portfolio efficiency problem. These
properties are relevant to investigate computational methods for portfolio
efficiency with incomplete information on the utility function u.

5.3 The case of Set-Valued Probability

This section is devoted to the case in which the underlying level of uncer-
tainty is modelled through a set-valued probability measure. In particular
when Φ maps into 2R, it describes uncertainty w.r.t. the ”true” classical
probability distribution involved in the stochastic optimization problem. In
other words, we extend problem (32) focusing on the solution to the problem

max
x∈X

EΦ (f(x, ·)) (45)

Let us notice that, for each Φ ∈ M (here M denotes the space of all proba-
bility multimesures on Ω) the problem

max
x∈X

EΦ (f(x, ·)) (46)

is a set-valued optimization program. In the following let us define G(x) :=
EΦ (f(x, ·)) and Gp(x) := spt (p,EΦ (f(x, ·))) = EΦp (f(x, ·)).

As in the previous section we begin studying continuity and convexity
properties for Problem (46).

Proposition 16. Suppose that f is uniformly bounded by a constant K for
any x ∈ X and ω ∈ Ω. Then ∥G(x)∥ is bounded by K for any x ∈ X.
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Proof. For any p ∈ S1, we have that

|spt(p,G(x))| = |Gp(x)| ≤
∫
Ω
|f(x, ω)|dΦp ≤ KΦp(Ω) = K

and then
∥G(x)∥ = sup

∥p∥=1
|spt(p,G(x))| ≤ K.

■

The following results state some regularity conditions for the maps G
and Gp.

Proposition 17. Suppose that f is upper (lower) semi-equicontinuous. Then
both G(x) and Gp(x), for all p, are upper (lower) semicontinuous as well. If
f is equicontinuous then Gp is continuous and G is Hausdorff continuous.

Proof. By assumption for every x0 ∈ X and ε > 0 there exists a neighbour-
hood U of x0 such that

f(x, ω) ≤ f(x0, ω) + ε (47)

for every x ∈ U , ∀ω ∈ Ω. Hence, for x ∈ U and p ∈ Rd with ∥p∥ = 1 it holds

EΦp (f(x, ·)) =
∫
Ω
f(x, ω)dΦp ≤

∫
Ω
(f(x0, ω) + ε)dΦp =

=

∫
Ω
f(x0, ω)dΦ

p + ε = EΦP (f(x, ·)) + ε,

which means that Gp(x) is u.s.c. at x0. This is equivalent to say that∫
Ω
f(x, ω)dΦ ⊆

∫
Ω
f(x0, ω)dΦ+ εB.

The proof for the lower semicontinuous case is analogous. ■

More on this can be found in [3].

Proposition 18. Suppose that x0 ∈ X is a maximizer. Then, for any
p ∈ S1, x0 is a global solution to the problem

max
x∈X

Gp(x).

Conversely if x0 is a maximizer for Gp(x) over X for all ∥p∥ = 1. Then x0
is also a maximizer for G(x) over X.

Proof. The result follows by using the equivalence G(x) ⊆ G(x0) iff Gp(x) ≤
Gp(x0) for all ∥p∥ = 1. ■
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Remark 1. Solving problem (45) means to hedge against uncertainty about
a probability distribution, which can be seen since a solution x0 of problem
(45) is a minimizer for every stochastic optimization problem of the form
(17) when the probability distribution ranges in P = {Φp, p ∈ S1}.

This condition might be too complicated to be checked as it requires to
verify the optimality of x0 for all p ∈ S1. This context can be simplified
under the hypothesis that Φ is a set-valued probability taking polyhedral
values in a specific way. Suppose that the exists v1,v2, . . . ,vm vectors in
Rd such that

Φ(A) = conv{ϕs(A)vs, s = 1...m}, (48)

where ϕs are classical probability measures. Then it is easy to check that in
this case

G(x) = conv {Gs(x)vs, s = 1...m}

where

Gs(x) =

∫
Ω
f(x, ω)dϕs(ω).

The following result states a sufficient condition under the hypothesis of a
set-valued probability taking polyhedral values.

Proposition 19. Suppose that Φ(A) is defined as in (48) and that x0 ∈ X
is simultaneously a solution to all the problems

max
x∈X

Gs(x)

for s = 1, 2, . . . ,m. Then x0 ∈ X is a maximizer of G(x) over x ∈ X.

Proof. The proof follows from the observation that G(x) ⊆ G(x0) iff Gi(x) ≤
Gi(x0) for all i = 1, 2, . . . ,m. ■

There is a geometrical condition we can use to check whether a given
point x0 is a maximizer for G over X. For any p ∈ S1, let xpmax be the
maximizer of Gp over X and construct the following set:

Amax =
⋂

∥p∥=1

{x : x · p ≤ Gp(xpmax)}. (49)

The set Amax is the maximal set as it contains any G(x) for any x ∈ X. The
following result is then immediate.

Proposition 20. If there exists x0 ∈ X such that G(x0) = Amax then x0 is
a global maximizer of G over X.

Proposition 21. Let f(x, ω) be a concave function w.r.t. x for all ω and
Φ a probability multimeasure. Then Gp(x) is concave for every p and G(x)
is a concave multifunction.

21



Proof. Since f is concave with respect to x, it holds that

f(tx1 + (1− t)x2, ω) ≥ tf(x1, ω) + (1− t)f(x2, ω)

for every x1, x2 ∈ X and t ∈ [0, 1]. Hence for p with ∥p∥ = 1 it holds∫
Ω
f(tx1 + (1− t)x2, ω)dΦ

p ≥
∫
Ω
(tf(x1, ω) + (1− t)f(x2, ω)) dΦ

p

= t

∫
Ω
f(x1, ω)dΦ

p + (1− t)

∫
Ω
f(x2, ω)dΦ

p

which gives concavity of Gp. This entails the concavity of the set-valued
map G. ■

Next proposition gives optimality conditions for Problem (46).

Proposition 22. Let Φ be a probability multimeasure. Suppose that f(x, ω)
is C1 as a function of x for all ω and x0 ∈ X be a maximizer. Then

0 ∈ EΦ(∇f(x0, ·)d) (50)

for any internal direction d ∈ KX(x0). Furthermore if f is concave, and
condition (50) holds, then x0 is a maximizer for problem (45).

Proof. As x0 ∈ X is a maximizer with respect to the inclusion ordering, we
get that

G(x) ⊆ G(x0)

for any x ∈ X. This implies that x0 ∈ X is a maximizer for the map Gp(x)
for all p. The regularity hypothesis on f allows us to conclude that Gp is
C1 as well. A classical optimality condition implies then that ∇Gp(x)d ≥ 0
for any internal direction d ∈ KX(x0) which in turn implies that

EΦp(∇f(x, ·)d) ≤ 0

for any p ∈ S1. This result allows to conclude that

0 ∈ EΦ(∇f(x, ·)d)

that is the thesis. The proof of the second part is immediate since Gp(x)
are concave. ■

The following corollary can be easily deduced from the above result by
replacing f(x, ω) with u (

∑
i λiXi(ω)). It also extends the results presented

in [34] for a classical utility function and in the case of a discrete probability
space.
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Corollary 2. A given portfolio Yλ̂ is stochastically efficient with respect to
the set-valued probability Φ and the utility u ∈ U if and only if it obeys the
following first-order optimality conditions:

EΦp

(
u′(Yλ̂(·))

[
Xi(·)− Yλ̂(·))

])
≤ 0 (51)

where Φp = spt(p,Φ) is a classical probability measure and this inequality
holds for all i = 1...N and for any p ∈ S1 (provided that u′(Yλ̂(·)) exists).

We close this subsection with stability results for problem (46).

Proposition 23. Let Φ be a probability multimeasure and fn → f uniformly
over X× Ω. Then Gn(x) → G(x) uniformly on X.

Proof. The proof is quite straightforward. Let us first observe that Gp
n(x)

converges to Gp(x) uniformly, as

|Gp
n(x)−Gp(x)| =

∣∣∣∣spt(p,∫
Ω
fn(x, ω)− f(x, ω) dΦ(ω)

)∣∣∣∣
=

∣∣∣∣∫
Ω
fn(x, ω)− f(x, ω)dΦp(ω)

∣∣∣∣
≤
∫
Ω
|fn(x, ω)− f(x, ω)|dΦp(ω)

≤ |fn(x, ω)− f(x, ω)| → 0

for any p ∈ S1. Now the thesis follows by recalling that

sup
x∈X

dH(Gn(x), G(x)) = sup
x∈X

sup
p∈S1

|Gp
n(x)−Gp(x)|

≤ sup
p∈S1

sup
x∈X

|Gp
n(x)−Gp(x)| → 0.

■

Proposition 24. let Φ be a probability multimeasure an fn → f uniformly
on X × Ω. If xn ∈ X is a sequence of maximizers of the map Gn(x), for
every subsequence xnk

converging to a point x̄ it holds that x̄ is a maximizer
for G(x) .

Proof. Since xn is a maximizer of Gp for every p ∈ S1, uniform convergence
of fn to f gives, by Proposition 23

Gp(x̄) = lim
k→+∞

Gp
nk
(xnk

) ≥ lim
k→+∞

Gp
xk
(x) = Gp

nk
(x), ∀x ∈ X

that is x̄ is a maximizer of Gp for every p ∈ S1 and hence a maximizer of
G. ■
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Proposition 25. Suppose that Φn → Φ in the Monge-Kantorovich distance
for probability multimeasures. Suppose further that fn → f uniformly on
X×Ω and |f(x, ω1)−f(x, ω2)| ≤ Kd(ω1, ω2) for all x ∈ X. Then Gn → G in
the Hausdorff distance uniformly over X. Furthermore, if xn is a maximizer
for Gn over X and xnk

→ x̄, then x̄ is a maximizer for G over X.

Proof. Computing, we have for any x ∈ X:

dH(Gn(x), G(x)) = sup
∥p∥=1

|spt(p,Gn(x))− spt(p,G(x))|

≤ sup
∥p∥=1

∫
Ω
|f(x, ω)| d(Φp

n(ω)− Φp(ω))

≤ dM(Φn,Φ) → 0

and thus Gn → G uniformly. Once this is established the second part follows
as in the proof of Proposition 24. ■

Stability properties for the portfolio efficiency problem easily follow from
the above results by replacing f(x, ω) with u (

∑
i λiXi(ω)). These properties

might be important to prove convergence results for computational methods
with partial uncertainty on the probability distribution.

6 Managerial Insights and Implementation

Dealing with uncertainty is one of the most challenging issues in the decision
making process. Decision makers have to include different forms of exoge-
nous noise and errors which can be generated from data, from estimation
techniques, from exogenous shocks, and so on.

Assuming different forms of the underlying distribution as well as relying
on sampling techniques can partially overcome these difficulties. In our
approach, instead, we propose somehow to include noise in the model itself.
Our model has been inspired by other existing approaches to deal with noise,
inconsistent, imprecise, and uncertain knowledge such as fuzzy set theory or
rough set theory.

In fuzzy decision making, for instance, the information in complex and
uncertain environments is modelled by means of fuzzy sets and the notion
of membership function plays a key role.

In rough set theory, the information is approximated by two precise
boundary lines which describe the imprecise concepts. A rough set is then
approximated by two regular sets.

In our approach we assume that information is described by compact
and convex sets which include any possible form of noise.

From the decision maker point-of-view there are several benefits of adopt-
ing this approach to portfolio management. Firstly, one positive aspect is
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related to the structural stability of the method. The optimal solution can be
seen as an averaged solution since the optimization model considers several
and different scenarios simultaneously. Secondly, statistical perturbations
and data noise are somehow neutralized and estimations are less dependent
on the sample size and the statistical approach. Thirdly, this approach can
easily be controlled via upper and lower optimization problems.

From a computational perspective this approach is not more complicated
to be implemented or more computationally challenging than other existing
techniques. In the simple case of interval-valued utility or interval-valued
probability, it relies on the solution of two optimization problems including
the upper and the lower limits, respectively. More precisely, if u is a given
positive interval-valued utility [u−, u+] (u− < 0 < u+) and ϕ is a probability
measure, then portfolio efficiency requires to solve the optimization problem:

min
λ∈Λ

Eϕ(u(Yλ)) (52)

This can be split into the following two problems:

min
λ∈Λ

−Eϕ(u
−(Yλ)) (53)

min
λ∈Λ

Eϕ(u+(Yλ)) (54)

In fact, it is evident that if λ̂ is a common solution to both problems Eq.
(53) and (54) then λ̂ solves problem Eq. (52).

The same kind of passages can be repeated in the case of interval-valued
probabilities in which the model formulation can be simplified by means of
lower and upper probabilities.

7 Conclusion

In this paper we have modelled two different extensions of the notion of port-
folio efficiency with incomplete information and partial uncertainty. Both
these formulations make use of the notion of set-valued function and set-
valued probability measure to model the lack of certainty on the objective
function and on the underlying probability distribution and both of them
are formulated as set-valued optimization problems by construction. We
have proved stability results, optimality conditions, and provided different
scalarization techniques.

Future research avenues include:

� an extension of these approaches to the case in which the inclusion
ordering is replaced by a more general ordering induced by a convex
closed cone with nonempty interior
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� the extension of the set-valued approach to the case of higher-order
stochastic dominance

� the study of empirical tests for set-valued stochastic dominance.
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