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Abstract

In this paper we study solutions of a variation of a classical integral
equation (based on the Picard operator) in which Lebesgue measure is
replaced by a self-similar measure µ. Our main interest is in the fractal
nature of the solutions and we use Iterated Function Systems (IFS) tools
to investigate the behaviour and self-similarity of these solutions. Both
the integral and differential form of the equation are discussed since each
brings useful insights. Several convergence results are provided along with
illustrative examples that show the applications of the theory when the
underlying fractal object is the celebrated Cantor set. Additionally we
show that the solution to our integral equation inherits self-similarity from
the defining measure µ.

1 Introduction

We are interested in studying the integral equation

f(x) = y0 +

∫ x

0

φ(t, f(t)) dµ(t) (1.1)

where µ is a Borel probability measure on [0, 1]. As usual both the integral and
differential forms of this equation are useful and provide insights. Our primary
interest is the case where µ is a self-similar measure and thus usually singular
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(in our examples µ is supported on a Cantor-type set). The solution of (1.1)
will have many features in common with the Cantor Ternary function in these
cases. We state existence and uniqueness results and also some stability results.
Our primary use of the stability results is to explore the solution to (1.1) via a
sequence of approximations µn to the measure µ; the approximating sequence
µn is generated by the action of an Iterated Function System with probabilities
(IFSP). In addition, we prove that under mild conditions the solution will inherit
self-similarity from µ.

There has been considerable previous work on extensions of calculus to sev-
eral different settings. One of the most popular has been calculus on so-called
time scales (the original paper is [1], for a more recent book see [2]). In essence
a time scale is a closed subset of R, but this does not do the subject justice.
There are many similarities between dynamical equations on time scales and
what we do but strong differences as well. Using the time scale setting would
require us to work with questions of the convergence of sequences of time scales
and solutions to dynamical equations on this sequence. Our method is much
simpler and more natural for our setting of IFS fractals.

Measure Differential Equations (MDEs) (the original paper is [3], for a more
recent book see [4]) is another generalization which encompasses equation (1.1)
and its solutions. In fact, our equation is a special case of an MDE. We avoid
the general technicalities of MDEs in this paper by concentrating on the simple
case a compact domain and bounded positive measure µ. Unlike most work
on MDEs, we are specifically interested in singular measures and the resulting
fractal behaviour of the solutions.

Another related area is that of Stieltjes derivatives, as nicely explained in [5].
Our problem and definitions also fit exactly into this setting and our definition
of a derivative in (2.4) and (2.5) are equivalent to the Stieltjes derivatives.
We claim no novelty in this definition (a form of which already appeared in a
paper by Young in 1917) but believe that our general results on convergence of
solutions on approximations to self-similar sets (and measures) are novel as is
our careful examination of these solutions on fractal sets. The paper [6] is the
paper most closely related to ours and gives formulas for solutions to first order
dynamical equations on the classical 1/3-Cantor set.

This paper is organized as follows. Section 2 gives the basic framework
along with existence and uniqueness results, stability results and a discussion of
an equivalent formulation in terms of a generalized differential-type equation.
There are two purposes for presenting the material in this section (other than
setting out our notation). The first purpose is to provide the stability results in
order to give a methodology for studying solutions to (1.1) and to justify and
motivate our examples in Section 4. The second reason is to provide the reader
with a complete and simple presentation of a framework. Certainly equation
(1.1) can be studied within the context of Time-Scales or Measure Differential
Equations, but giving a complete explanation of these frameworks is unnecessary
for our purposes.

Section 3 provides a brief background on IFS and IFSP, but only what is
necessary for the rest of the paper. In Section 4 we discuss several examples in
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detail in order to illuminate the differences between solutions of classical ODEs
and (1.1). Section 5 provides an alternative viewpoint which shows how one
may use a change-of-variable to transform (1.1) into a more standard problem.
In this section we also briefly indicate how the theory easily extends to higher-
order equations. In Section 6 we prove the self-similarity of the solution to (1.1)
under quite mild assumptions on the IFSP which generates µ. Finally, the paper
closes in Section 7 with some comments and suggestions for future work.

2 Framework

In this section we give the definitions and results which are necessary for our
presentation. As mentioned in the Introduction, equation (1.1) could also be
cast in the framework of Time-Scales or MDEs, but we choose a simpler and
more streamlined framework. Our discussion in this section is valid for a generic
measure µ, but our focus in the rest of the paper is on self-similar measures.

As our basic framework, take a Borel probability measure µ on [0, 1], a
bounded function φ : [0, 1] × R → R, and y0 ∈ R and consider the integral
transform T given by

T (f)(x) = y0 +

∫ x

0

φ(t, f(t)) dµ(t). (2.2)

It is clear that T (f) is bounded if φ is bounded. Next, notice that for
0 ≤ x < y ≤ 1 we have

|T (f)(x)− T (f)(y)| ≤
∫ y

x

|φ(t, f(t))| dµ(t) ≤ ‖φ‖∞µ([x, y])

and thus T maps continuous functions to continuous functions if µ is non-atomic
and φ is bounded.

Similarly,

|T (f)(x)− T (g)(x)| ≤
∫ x

0

|φ(t, f(t))− φ(t, g(t))| dµ(t)

≤ µ([0, 1])Kφ‖f − g‖∞ (2.3)

where Kφ is such that |φ(t, x) − φ(t, y)| ≤ Kφ|x − y| for all t ∈ [0, 1] (so is a
uniform Lipschitz constant for φ in its second argument). Thus if φ is Lipschitz
then T is Lipschitz as a map from bounded functions to bounded functions,
T : B[0, 1] → B[0, 1] (recall that B(X) is a Banach space when using the
supremum norm).

As mentioned in the Introduction, our primary interest will be in examining
the solutions to the integral equation f(x) = T (f)(x) or

f(x) = y0 +

∫ x

0

φ(t, f(t)) dµ(t).
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Figure 1: “Devil Staircase”: cumulative density function for the uniform mea-
sure on the classical 1/3-Cantor set

We are particularly interested in the situation where µ is fractal. For us this
means that either the support of µ is a Cantor-type set or the support of µ is
[0, 1] but its distribution function is fractal-like (see Figure 1 for an example).

First we give some useful notation. For any 0 < α ≤ 1, we use the notation
T |[0,α] for the operator T defined by (2.2) but with the restriction 0 ≤ x ≤ α.
It will become necessary to consider a sequence of operators as defined in (2.2)
where both φ and µ vary. In these cases we will use the notation Tζ,θ for the
operator

Tζ,θ(f)(x) = y0 +

∫ x

0

ζ(t, f(t)) dθ(t).

It is worth noting that if f : [0, 1]→ R is a fixed point of T then f |[0,α] is a
fixed point of T |[0,α]. In addition, suppose that for α > 0 we have that T |[0,α]
has a unique fixed point for each given y0. Then the usual “local-to-global”
pasting technique will give a unique fixed point f : [0, 1] → R to T for each
given y0.

Recall that φ : [0, 1]×R→ R is locally Lipschitz in its second argument if for
any compact K ⊂ [0, 1]×R there is a k > 0 such that |φ(t, s)−φ(t, s′)| ≤ k|s−s′|
for all (t, s), (t, s′) ∈ K. Notice that if φ has a continuous first partial derivative
with respect to its second argument then it is locally Lipschitz in its second
argument.

We comment that it is possible to remove the condition that φ be bounded
at the cost of possibly only having local solutions to (1.1).

Proposition 2.1. Suppose that φ is bounded, continuous, and locally Lipschitz
in its second argument.

1. If µ is non-atomic then (1.1) has a unique solution on [0, 1].

2. If µ has no atoms of size larger than α ≥ 0, then (1.1) has a unique
solution on [0, 1] for any φ with uniform Lipschitz constant K < 1/α.
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Proof. 1. A straightforward modification of the classical proof will work.
More specifically, in [7, Thm 3.1, chapter 2] we simply use Iα(t0) =
{t ≤ t0 : µ([t0, t]) ≤ α} ∪ {t ≥ t0 : µ([t0, t]) ≤ α} rather than Iα(t0) =
[t0 − α, t0 + α] and the rest of the details are the same. Since µ is non-
atomic Iα(t0) is a closed interval of positive length for any α > 0. The
“local-to-global” extension works the same and yields a solution defined
on all of [0, 1].

2. The assumptions on µ mean that we can choose a > 0 so that µ([0, a]) ≤ α
and thus (2.3) implies that T : B[0, a]→ B[0, a] is contractive and so there
is unique solution to (1.1) on [0, a]. We continue by repeating the argument
with some b > a so that µ([a, b]) ≤ α with appropriate initial condition
and pasting the solutions together.

We will use a sequence of approximations to (1.1) in order to understand
the features of a solution. Proposition 2.3 shows that this process works.

Lemma 2.2. Suppose that µn → µ weak* and φn → φ uniformly. Then
Tφn,µn(f)→ Tφ,µ(f) uniformly on [0, 1]. In particular Tφn,µn |[0,α](f)→ Tφ,µ|[0,α](f)
uniformly on [0, α] for any 0 < α ≤ 1.

Proof. We see that∣∣∣∣∫ 1

0

φn(t, f(t))dµn(t) −
∫ 1

0

φ(t, f(t))dµ(t)

∣∣∣∣ ≤∫ 1

0

|φn(t, f(t))− φ(t, f(t))|dµn(t) +

∫ 1

0

|φ(t, f(t))| d|µn − µ|(t).

Thus for any x we have

|Tφn,µn(f)(x)−Tφ,µ(f)(x)| ≤
∫ 1

0

|φn(t, f(t))−φ(t, f(t))|dµn(t)+

∫ 1

0

|φ(t, f(t))| d|µn−µ|(t).

The first term goes to zero since φn → φ uniformly and all µn are probability
measures. The second term goes to zero since t 7→ φ(t, f(t)) is continuous and
µn → µ weak*.

Proposition 2.3. Suppose that µn → µ weak*, |φ(s, t)| ≤M and |φn(s, t)| ≤M
for all (s, t) ∈ [0, 1]×R and n, φn → φ uniformly on compact subsets of [0, 1]×R,
and φ and φn are all locally Lipschitz with respect to their second argument. Let
fn be the fixed point of Tφn,µn

and f be the fixed point of Tφ,µ. Then fn → f
uniformly on [0, 1].

Proof. The assumptions and definition (2.2) imply that there is a B > 0 so
that |fn(x)| ≤ B and |f(x)| ≤ B for all x ∈ [0, 1] and n. Let k be a Lipschitz
factor for φ and all φn on the compact set [0, 1] × [−B,B]. By standard ar-
guments (mentioned above), there are α > 0 and 0 ≤ λ < 1 so that Tφ,µ|[0,α]
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and all Tφn,µn |[0,α] are λ-contractions. However, then by the standard abstract
argument (for example, [7, Cor 3.1, chapter 1]) and Lemma 2.2 we have that
fn|[0,α] → f |[0,α]. This along with the “local-to-global” pasting finishes the
proof.

Under slightly different assumptions we can show that the limit of solutions
is also a solution.

Proposition 2.4. Suppose that µn → µ weak* and φn → φ uniformly on [0, 1]×
R where φn, φ are all locally Lipschitz in their second variable. Furthermore,
suppose that fn ∈ C[0, 1] is a solution to (1.1) using µn and φn and fn → f
uniformly on [0, 1]. Then f is a solution to (1.1) using µ and φ.

Proof. By the assumptions on fn and f there is an M > 0 so that |fn(x)| ≤M
for all x ∈ [0, 1] and n. By the assumption of locally Lipschitz there is a K > 0
so that |φm(t, s1)− φm(t, s2)| ≤ K|s1 − s2| for all s1, s2 ∈ [−M,M ].

Thus we have

|φm(t, fm(t))− φ(t, f(t))| ≤ |φm(t, fm(t))− φm(t, f(t))|+ |φm(t, f(t))− φ(t, f(t))|
≤ K|fm(t)− f(t)|+ |φm(t, f(t))− φ(t, f(t))|

and so φm(t, fm(t))→ φ(t, f(t)) uniformly in t over [0, 1].
Next we compute that

|f(x)−
∫ x

0

φ(t, f(t)) dµ| ≤ |f(x)− fm(x)|+
∣∣∣∣∫ x

0

φm(t, fm(t)) dµm −
∫ x

0

φ(t, f(t)) dµ

∣∣∣∣
≤ |f(x)− fm(x)|+

∫ x

0

|φm(t, fm(t))− φ(t, f(t))|dµm

+

∫ x

0

|φ(t, f(t))| d|µ− µm|.

The first term can be made arbitrarily small since fm → f uniformly. The
second term can be made arbitrarily small since φm(t, fm(t)) → φ(t, f(t)) uni-
formly and each µm is a probability measure. Finally, the third term can be
made arbitrarily small since µm → µ in the weak* topology and t 7→ φ(t, f(t))
is continuous. Thus we have that f is a solution as desired.

Since we are primarily interested in µ which are the invariant measures
for an IFS with probabilities, we have a natural means of constructing the
approximating sequence µn. In fact, we can choose each µn to be absolutely
continuous with a piece-wise constant density function. In this case, we can
solve for fn by using classical ODE techniques on each piece and splicing the
local solutions together to obtain fn.

For the remainder of the paper we will assume that µ is non-atomic and
that φ is bounded, continuous and locally Lipschitz. Thus we have T : C[0, 1]→
C[0, 1]. In addition, the support of µ is a perfect subset of [0, 1] (it is the support
of µ which could be regarded as a “time scale” if we chose to use that viewpoint).
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Equivalent ODE formulation

As usual we can try to formulate (1.1) in differential form. Because µ may
not be Lebesgue measure the result is different than in the classical case but
leads to a Stieltjes-type derivative (see [5] for a very nice overview of results
and comparison with classical calculus). We give some basic derivations just for
illustration; for a careful development the reader is invited to see [1, 8, 5, 9].

Intuitively we have

T (f)(x+ h)− T (f)(x) =

∫ x+h

x

φ(t, f(t)) dµ(t) = φ(ζh, f(ζh))µ([x, x+ h])

for some ζh ∈ (x, x+ h) and thus

T (f)(x+ h)− T (f)(x)

µ([x, x+ h])
= φ(ζh, f(ζh))→ φ(x, f(x)) as h→ 0+

if φ and f are both continuous at x. We have to be careful at points x which
are boundary points of the support of µ (since then the denominator might be
zero for all h > 0), but fortunately there are only countably many such points
and the set of such points has µ measure zero. Motivated by this we define the
µ-derivatives of a function G to be

D+
µ (G)(x) := lim

h→0+

G(x+ h)−G(x)

µ([x, x+ h])
(2.4)

and

D−µ (G)(x) := lim
h→0+

G(x)−G(x− h)

µ([x− h, x])
(2.5)

when these limits exists. Whenever the two limits exist and are equal we label
their common value Dµ(G)(x) and say that G is µ-differentiable at x. Many
of the classical properties for differentiable functions hold (in an appropriately
amended form) for µ-differentiable functions (see [5] for a nice discussion of this).
For instance, monotone functions are µ-differentiable µ-almost everywhere.

Remark 2.5. Letting θ(x) = µ([0, x]) be the distribution function for µ, we wish
to point out to the reader that our Dµ(G) corresponds with G′θ from [5].

The standard properties of the derivative hold for Dµ (with a few necessary
changes, see [5] for details). In particular, a version of the Fundamental Theorem
of Calculus holds which gives that the integral equation (1.1) becomes the µ-
differential initial value problem

Dµ(f)(x) = φ(x, f(x)), f(0) = y0. (2.6)

We must be careful in how we interpret (2.6), in particular Dµ(f)(x). Clearly
if µ([x − ε, x + ε]) = 0 for some ε > 0 then Dµ(f) will not exist at x for
any non-constant f . However, such x only occur in the complementary “gaps”
of support(µ) and thus they play no role in the action of T . In addition, if
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µ([x − ε, x + ε]) > 0 but µ([x, x + ε]) = 0 for some ε > 0 (so that x is a left
endpoint of a “gap”), then only D−1µ (f) is well-defined at x. Clearly a parallel
statement holds for right endpoints of “gaps”. The set of all these endpoints is
countable and, since we assume that µ is non-atomic, has µ-measure zero. Thus
again it plays a negligible role in the action of T . Annoyingly they do form a
set which is dense in support(µ).

A useful way to think about (2.6) is imagining that vector field φ being
“turned off” in the “gaps” and turned back on on support(µ). Of course, when
µ is supported on a Cantor-type set it is turned on for the briefest of moments.
One could also imagine that all the action only occurs on support(µ) and the
“gaps” are used only to visualize the resulting function (since it is difficult to
plot a function whose domain is a Cantor set!)

3 Constructing self-similar measures

In this section we briefly review the construction of self-similar probability mea-
sures, since our main interest is in such measures. We use the convenient ma-
chinery of Iterated Function Systems (IFS) and an IFS with probabilities (IFSP).
This construction was developed in [10] (also see [11, 12] for more details).

An IFS on a complete metric space X is a finite set of contractive self-maps
wi : X → X. The attractor of the IFS {wi} is the unique non-empty compact
set A ⊂ X which satisfies the self-tiling condition

A =
⋃
i

wi(A). (3.7)

This set is usually constructed as the fixed-point of the contractive set-valued
mapping ŵ given by

ŵ(B) =
⋃
i

wi(B).

This ŵ is contractive in the Hausdorff distance on the space of all non-empty
compact subsets of X. Thus ŵn(B)→ A for any appropriate initial set B.

A self-similar measure is also constructed as the fixed point of a contraction
on the space P(X) of Borel probability measures on X. We use Lip1(X) to
denote the set of real functions on X with Lipschitz factor at most one.

Definition 3.1. Let µ, ν ∈ P(X). Then the Monge-Kantorovich distance be-
tween µ and ν is given by

dMK(µ, ν) = sup

{∫
X

f(x) d(µ− ν)(x) : f ∈ Lip1(X)

}
.

This metric gives the weak* topology on probability measures (see [12] for
more details).

An IFS with probabilities is an IFS {wi} along with an associated set of
probabilities pi. The invariant measure µ of an IFSP satisfies the self-similarity
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condition
µ(B) =

∑
i

piµ(w−1i (B)), (3.8)

where B is an arbitrary Borel set. The measure µ is the fixed point of the
so-called Markov operator M : P(X)→ P(X) given by

Mµ(B) =
∑
i

piµ(w−1i (B)). (3.9)

In particular, given an arbitrary initial measure µ0 ∈ P(X), the sequence
µn+1 = Mµn converges geometrically fast (in the dMK metric) to the invariant
measure µ.

It is worth noting that often M preserves absolute continuity of the measure
(and singularity as well); this is true for all of our examples.

As a first simple example, take X = [0, 1], w1(x) = x/2, w2(x) = x/2 + 1/2
and p1 = p2 = 1/2. Then it is not hard to see that the invariant measure for
this IFSP is Lebesgue measure on [0, 1].

As another more interesting example we again take X = [0, 1] but w1(x) =
x/3 and w2(x) = x/3 + 2/3 with p1 = p2 = 1/2. This time we obtain µ as
the “uniform” measure on the classical 1/3-Cantor set. Figure 2 illustrates the
iteration of M starting with µ0 being Lebesgue measure on [0, 1]. The top row
shows the density functions for µ0, µ1 and µ5 while the bottom row shows the
(cumulative) distribution functions for µ0, µ1, and µ5. For those readers who
have not seen IFSP before it is worth examining this figure as it shows both the
construction of the Cantor set (as the support of the limiting measure) and also
the redistribution of mass as given by (3.9). The singular nature of the limiting
measure is evident from the fact that the “columns” in the densities get taller
and thinner.

The top rows of Figures 4, 5, and 6 give the sequence of densities for some
other IFSP operators.

From Figure 2 it is clear that the distribution function of µ also has self-
similarity. In this case, it is self-similar under the IFSM (an IFS on Maps, see
[12]) given by

T (g)(x) =


g(3x)/2, if 0 ≤ x ≤ 1/3,

1/2, if 1/3 < x < 2/3,

g(3x− 2)/2 + 1/2, if 2/3 ≤ x ≤ 1.

(3.10)

As a final comment for this section, it is important to note that the invariant
measure µ is non-atomic as long as none of the maps wi have a finite set as their
range.

4 Example DE solutions using fractal measures

In this section we give some examples to illustrate the important behaviour of
the solutions to (1.1).
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Figure 2: Iteration for “Uniform” Cantor measure: Top row: µ0, µ1, µ5. Bottom
row: their distribution functions.

Before we start with the examples, we wish to point out that if φ(t, s) = 1
with y0 = 0 we get the DE Dµ(f) = 1 whose solution is simply the cumulative
distribution for µ.

Example 4.1. For our first example we take µ to be the invariant measure for
the IFS with probabilities w0(x) = x/3, w1(x) = x/3 + 2/3, p0 = p1 = 1/2.
In this case, the invariant measure µ is a “uniform” measure supported on the
classical 1/3-Cantor set. We use Proposition 2.3 to illustrate the solution to

Dµ(f) = f, f(0) = 1. (4.11)

In the classical case we expect the solution f(x) = ex and the result here is a
modification of this. In fact, it is a type of “restriction” of the exponential to
the Cantor set.

For µ0 we take Lebesgue measure on [0, 1]. Then we take the sequence of
approximating measures µn where µn+1 = Mµn, with M the Markov operator
for the IFSP (3.9)

Mν =
1

2
ν ◦ w−10 +

1

2
ν ◦ w−11 .

We know that µn → µ in the Monge-Kantorovich metric and thus the sequence
of solutions fn converge uniformly to the solution f of (4.11). In Figure 3 the
top row illustrates the densities for µ0, µ1 and µ5 (which is visually “close” to
µ) and the second row illustrates the solutions f0, f1 and f5 (which is visually
close to f). The first thing one notices about f5 (and, thus f) is that it looks
very similar to the graph of the “Devil’s staircase” function (shown in Figure
1). This is no surprise since f can only change on the 1/3-Cantor set and is
increasing.

Clearly f0(x) = ex, the solution to the classical problem.
To understand f1(x), we see that the density for µ1 is constant and equal to

3/2 over the two intervals [0, 1/3] and [2/3, 1] and zero on the interval (1/3, 2/3).

10



Figure 3: Example 4.1: Top row: µ0, µ1, µ5. Bottom row: f0, f1, f5

Thus the “vector field” is constant over two intervals and “turned off” in the
middle. This results in a constant exponential growth over [0, 1/3] and [2/3, 1]
and no change over (1/3, 2/3). Said another way, the equation

Dµ1f = f, f(0) = 1, 0 ≤ x ≤ 1,

results in the three “local” problems

f ′ =
3

2
f, f(0) = 1, 0 ≤ x ≤ 1/3,

f ′ = 0, f(1/3) = α, 1/3 < x < 2/3,

f ′ =
3

2
f, f(2/3) = β, 2/3 ≤ x ≤ 1,

where α and β are chosen to enforce continuity. Thus,

f1(x) =


e3x/2, if 0 ≤ x ≤ 1/3,

e1/2, if 1/3 < x < 2/3,

e3/2x−1/2, if 2/3 ≤ x ≤ 1.

In a similar way the solution f2(x) is given by

f2(x) =



e9x/4, if 0 ≤ x ≤ 1/9,

e1/4, if 1/9 < x < 2/9,

e9x/4−1/4, if 2/9 ≤ x ≤ 1/3,

e1/2, if 1/3 < x < 2/3,

e9x/4−1, if 2/3 ≤ x ≤ 7/9,

e3/4, if 7/9 < x < 8/9,

e9x/4−5/4, if 8/9 ≤ x ≤ 1.

11



Notice that f0(x) = f1(x) for x = 0, 1. Similarly, f1(x) = f2(x) for x = 0, 1
and x ∈ [1/3, 2/3]. In fact, fn(x) = fn+1(x) for x = 0, 1 and all the points
where fn is constant. Thus moving from fn to fn+1 is a process of refinement;
from this we can see the uniform convergence fn → f .

Compare the exponent of 9x/4 in f2 with the exponent of 3x/2 in f1 to the
exponent x in f0. The growth rate has to increase when we move from f0 to f1
to f5 since the intervals over which fn is changing are getting smaller but we
have the interpolation property which was just mentioned.

For this example, we have fn+1 = T fn where

T (g)(x) =


√
g(3x), if 0 ≤ x ≤ 1/3,

e1/2, if 1/3 < x < 2/3,

e1/2
√
g(3x− 2), if 2/3 ≤ x ≤ 1,

(4.12)

and thus f is the fixed-point of a fractal-type transform on functions. Of course
this is not surprising since µ is self-similar.

Example 4.2. For our second example we keep everything the same as the first
example but only modify the probabilities to be p0 = 1/5 and p1 = 4/5. Figure
4 illustrates the densities for µ0, µ1, and µ5, and the solutions f0, f1 and f5. It
is instructive to compare these to the corresponding parts of Figure 3.

Figure 4: Example 4.2: Top row: µ0, µ1, µ5. Bottom row: f0, f1, f5
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In this case we have

f1(x) =


e3x/5, if 0 ≤ x ≤ 1/3,

e1/5, if 1/3 < x < 2/3,

e(12x−7)/5, if 2/3 ≤ x ≤ 1.

f2(x) =



e9x/25, if 0 ≤ x ≤ 1/9,

e1/25, if 1/9 < x < 2/9,

e(36x−7)/25, if 2/9 ≤ x ≤ 1/3,

e1/5, if 1/3 < x < 2/3,

e(36x−19)/25, if 2/3 ≤ x ≤ 7/9,

e9/25, if 7/9 < x < 8/9,

e(144x−119)/25, if 8/9 ≤ x ≤ 1.

Notice that the growth rate varies across the intervals as a result of the two
different probabilities. The self-similar relationship fn+1 = T fn is given by the
operator

T (g)(x) =


(g(3x))1/5, if 0 ≤ x ≤ 1/3,

e1/5, if 1/3 < x < 2/3,

e1/5(g(3x− 2))4/5, if 2/3 ≤ x ≤ 1.

(4.13)

Example 4.3. Our third example illustrates the effects of different geometric
contraction factors along with different probabilities but keeps the same function
φ as before. This time we use the IFS maps w0(x) = 2x/5 and w1(x) = x/3+2/3
along with p0 = 4/5 and p1 = 1/5.

Figure 5: Example 4.3: Top row: µ0, µ1, µ5. Bottom row: f0, f1, f5
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In this case we have

f1(x) =


e2x, if 0 ≤ x ≤ 2/5,

e4/5, if 2/5 < x < 2/3,

e(3x+2)/5, if 2/3 ≤ x ≤ 1.

f2(x) =



e4x, if 0 ≤ x ≤ 4/25,

e16/25, if 4/25 < x < 4/15,

e(6x+8)/25, if 4/15 ≤ x ≤ 2/5,

e4/5, if 1/3 < x < 2/3,

e6x/5, if 2/3 ≤ x ≤ 4/5,

e24/25, if 4/5 < x < 8/9,

e(9x+16)/25, if 8/9 ≤ x ≤ 1.

The self-similar relationship fn+1 = T fn is given by the operator

T (g)(x) =


(g(5x/2))4/5, if 0 ≤ x ≤ 2/5,

e4/5, if 2/5 < x < 2/3,

e4/5(g(3x− 2))1/5, if 2/3 ≤ x ≤ 1.

(4.14)

Example 4.4. Our next example is one where µ is fully supported but uses
the same function φ as before. This time we use the IFS maps w0(x) = x/2,
w1(x) = x/2 + 1/2 along with the probabilities p0 = 4/5 and p1 = 1/5.

Figure 6: Example 4.4: Top row: µ0, µ1, µ5. Bottom row: f0, f1, f5

The self-similar relationship fn+1 = T fn is given by the operator

T (g)(x) =

{
(g(2x))4/5, if 0 ≤ x ≤ 1/2,

e4/5(g(2x− 1))1/5, if 1/2 ≤ x ≤ 1.
(4.15)

Example 4.5. Our last example in this section will take µ to be the invariant
measure for the IFS with probabilities w0(x) = x/3, w1(x) = x/3 + 2/3, p0 =
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p1 = 1/2 (so µ is the “uniform” measure on the 1/3-Cantor set) but this time
we choose φ(t, s) = s− s2 and y0 = 2, so we are solving the problem

Dµ(f) = f − f2, f(0) = 2 (4.16)

whose classical solution on [0, 1] is ψ(t) = 1/(1 − e−t/2). The plots of the µi
and fi are shown in Figure 6. The self-similar relationship fn+1 = T fn is given
by the operator

T (g)(x) =


Ψ0(g(3x)), if 0 ≤ x ≤ 1/3,

2
2−e−1/2 , if 1/3 < x < 2/3,

Ψ1(g(3x− 2)), if 2/3 ≤ x ≤ 1

(4.17)

where

Ψ0(y) =
2

2−
√

2− 2/y
and Ψ1(y) =

2

2− e−1/2
√

2− 2/y
.

Figure 7: Example 4.5: Top row: µ0, µ1, µ5. Bottom row: f0, f1, f5

5 Lebesgue measure as a prototype for an arbi-
trary non-atomic measure

In this section we show how we can transform equation (1.1) into a more stan-
dard type of integral equation involving Lebesgue measure. This is accomplished
by using a change-of-variable which is defined using the measure µ.

We use λ to denote Lebesgue measure on [0, 1]. As above, let φ : [0, 1]×R→
R and µ be given. Define θ : [0, 1] → [0, 1] by θ(x) = µ([0, x]), so that θ is

15



surjective, non-decreasing, and continuous (since µ has no atoms). We define
θ−1 by

θ−1(y) := inf{x : θ(x) = y}.

Notice that if θ is invertible this is simply the inverse but in general we have
θ−1(θ(x)) ≤ x and θ(θ−1(y)) = y. Since µ([θ−1(θ(x)), x]) = 0 if and only if
θ−1(θ(x)) < x we know that θ−1(θ(x)) = x for any x ∈ support(µ) which is not
the right-hand endpoint of some “gap”, an interval in [0, 1] \ support(µ). This
makes it clear that range(θ−1) is equal to support(µ) without these right-hand
endpoints.

What motivates our choice of θ is that µ = λ ◦ θ (this is the fact that drives
the well-known sampling method of cdf inversion). To see this just note that
for 0 ≤ a < b ≤ 1 we have λ(θ([a, b])) = λ([θ(a), θ(b)]) = θ(b)− θ(a) = µ([a, b]).

Notice that θ is a quotient map support(µ)→ [0, 1]. Recall that a quotient
map is a continuous surjection which maps closed sets to closed sets. θ is
continuous since µ is non-atomic, is surjective since µ is a probability measure,
and is a closed map since [0, 1] is compact. The idea is that each closure of a
gap in [0, 1] \ support(µ) is collapsed to a point – the gaps are “closed”. The
topology of the image is just that of [0, 1], all the components of support(µ) are
“glued together”. However, the geometry of the identification is given by the
way that the mass of µ is distributed on its support.

Now suppose that ψ is a solution to

ψ(z) = y0 +

∫ z

0

φ(θ−1(t), ψ(t)) dλ(t). (5.18)

Then we claim that f = ψ ◦ θ is a solution to (1.1). To see this we compute

f(x) = ψ(θ(x)) = y0 +

∫ θ(x)

0

φ(θ−1(t), ψ(t)) dλ(t)

= y0 +

∫ x

0

φ(θ−1(θ(τ)), ψ(θ(τ)) d(λ ◦ θ)(τ)

= y0 +

∫ x

0

φ(θ−1(θ(τ)), f(τ)) dµ(τ)

= y0 +

∫ x

0

φ(τ, f(τ)) dµ(τ).

(where we used the substitution t = θ(τ) and the fact that µ({x : θ−1(θ(x)) =
x}) = 1.

Higher order equations

The same process can be used for higher order equations. For example, take ψ
a solution to

y0 +

∫ y

x=0

∫ x

t=0

g(ψ(t)) dλ(t) dλ(x)
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(so to y′′ = g(y) with y(0) = y0 and y′(0) = 0) and define f(x) = ψ(θ(x)). For
notational convenience let

G(x) =

∫ x

t=0

g(ψ(t)) dλ(t).

Then

f(y) = ψ(θ(y)) = y0 +

∫ θ(y)

0

G(x) dλ(x)

= y0 +

∫ y

0

G(θ(τ)) d(λ ◦ θ)(τ)

= y0 +

∫ y

0

{∫ t=θ(τ)

t=0

g(ψ(t)) dλ(t)

}
dµ(τ)

= y0 +

∫ y

0

{∫ s=τ

s=0

g(ψ(θ(s))) d(λ ◦ θ)
}
dµ(τ)

= y0 +

∫ y

0

∫ τ

0

g(f(s)) dµ(s) dµ(τ),

just as before. In this way, we can transform a solution to

y′′ = g(y), y(0) = y0, y
′(0) = 0

into a solution for

D2
µ(f) = g(f), f(0) = y0, Dµf(0) = 0

in the same way as we did for first-order equations.

Conversion of µ-derivative to a “standard” derivative

In fact, this all leads to considering the possibility of relating the µ-derivative to
a “normal” derivative. To this end, let µ be a non-atomic probability measure
on [0, 1], C = support(µ) and f : [0, 1] → R. It is clear that the limit defining
Dµf(x) does not exist for any x in a complementary gap [0, 1]\C and only exists
as a one-sided limit for those x ∈ C which are endpoints of some complementary
gap.

As before let θ(x) = µ([0, x]) and θ−1(y) := inf{x : θ(x) = y}.

Lemma 5.1. Let x, xn ∈ C with x not an endpoint of a complementary gap.
Then xn → x iff θ(xn)→ θ(x).

Proof. One direction is clear since θ is continuous. Thus suppose that yn :=
θ(xn) → θ(x) =: y and for the sake of obtaining a contradiction suppose that
xn 6→ x. Then there is some ε > 0 and a subsequence xnk

with |xnk
− x| ≥ ε

but ynk
→ y. We must have that either xnk

< x infinitely often or x < xnk
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infinitely often. With no loss of generality we assume that xnk
< x for all k and

thus |ynk
−y| = µ((xnk

, x])→ 0. Since x is not an endpoint of a complementary
gap there is some z ∈ C with z < x and x− z < ε/2. But this means that

|ynk
− y| = µ((xnk

, x]) ≥ µ([z, x]) > 0

for all k, since µ is non-atomic. This contradicts yn → y.

Let f : [0, 1]→ R be given and define F : [0, 1]→ R by F (y) = f(θ−1(y)).

Proposition 5.2. Let x ∈ support(µ) not be an endpoint of a complementary
gap and define y = θ(x). Then

Dµf(x) = lim
η→x,η∈support(µ)

f(η)− f(x)

θ(η)− θ(x)
= lim
γ→y

F (γ)− F (y)

γ − y
= F ′(y).

Proof. This is simply an application of the change-of-variable y = θ(x) along
with the definitions and Lemma 5.1.

Thus any statement involving the µ-derivative on support(µ)\{ endpoints }
can be transferred to an equivalent statement on [0, 1] involving the “standard”
derivative. This is accomplished by the change-of-variable θ which “uniformizes”
the length scale.

6 Self-similarity of solutions

In the examples in Section 4 we saw that all of the solutions possessed self-
similarity. In this short section we will prove that this is a general feature, at
least in a slightly restricted class of problems. It is likely that this is true for a
wider range of problems, but we leave this investigation for future work.

Assume that either φ(t, s) < 0 or φ(t, s) > 0 for all s ∈ R and t ∈ [0, 1]. The
main purpose of this assumption is for the classical solution to be invertible
since it is then either strictly decreasing or strictly increasing.

In addition, take an injective IFS wi, i = 0, 1, . . . , N , on [0, 1] with wi(x) <
wj(y) for all x, y ∈ [0, 1] whenever i < j. This puts an order on the ranges
wi([0, 1]) and ensures that they are disjoint. Assume that 0 ∈ w0([0, 1]) and
1 ∈ wN ([0, 1]) and let Gi be the open interval (or “gap”) between wi−1([0, 1])
and wi([0, 1]). As usual we also have a set of probabilities p0, p1, . . . , pN which
we assume are all strictly positive. Let θ(x) = µ([0, x]) be the distribution
function for µ, the invariant measure for this IFSP.

Let ψ : [0, 1]→ R be the solution to the classical problem

dy/dt = φ(θ−1(t), y(t)), y(0) = y0.

Define the maps Ψi, for i = 0, 1, . . . , N by

Ψi(y) = ψ(p0 + p1 + · · · pi−1 + piψ
−1(y) ). (6.19)
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Proposition 6.1. Let {wi, pi} be the IFSP discussed above and µ be its invari-
ant measure and let φ satisfy the conditions above. Then the solution f to (1.1)
for this choice of µ and φ is self-similar under the operator T defined by

T (g)(x) =

{
Ψi(g(w−1i (x))), if x ∈ wi([0, 1]),

ψ(p0 + p1 + · · ·+ pi), if x ∈ Gi.

Proof. We first note that θ is self-similar under the operator J given by

J (g)(x) =

{
p0 + p1 + · · · pi−1 + pig(w−1i (x))), if x ∈ wi([0, 1]),

p0 + p1 + · · ·+ pi, if x ∈ Gi.

Next we note that the solution f can be written as f = ψ ◦ θ, as explained in
Section 5. Finally, we see that

Ψi(f(w−1i )) = ψ(piψ
−1(ψ(θ(w−1i ))) + p0 + · · ·+ pi−1)

= ψ(piθ(w
−1
i (x)) + p0 + · · ·+ pi−1) = ψ(θ(x))

= f(x)

for x ∈ wi([0, 1]). For x ∈ Gi we have

f(x) = ψ(θ(x)) = ψ(p0 + p1 + · · ·+ pi−1)

and thus f = T f , as desired.

7 Comments and future directions

The change-of-variable we give in Section 5 is simple because the measure µ is
non-atomic and thus the cumulative density function is a continuous; invariant
measures of IFSP are non-atomic if the IFS maps wi are reasonable (in our
examples they are all injective). We also wish to point out that the equiva-
lent differential equation after the change-of-variable may have a discontinuous
vector field, particularly in the non-autonomous case.

Although our examples in Section 4 are all of autonomous equations there
is no problem with non-autonomous equations. Of course generating the solu-
tions to the approximations using µn is a bit more involved, but the issues are
computational and not theoretical. However, for non-autonomous equations the
change-of-variable is a bit more involved since it involves a change of time in
the vector field as well.

It would be interesting to compare the behaviour of solutions of higher-
order µ-differential equations for self-similar µ; this study would be a relatively
straightforward extension of our results. Certainly one way to do this is via a
system of equations and thus vector-valued integral and µ-differential equations.
There should be no essential difficulty in doing this as the estimates would be
the same. However, the nature of the oscillations might be interesting, espe-
cially if one could get self-similar oscillations down the scales. It would also be
interesting to examine fractional differential equations in this context.
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Another direction for future work is examining the self-similarity of the solu-
tions to (1.1) in the case that the IFS is overlapping. This introduces substantial
complications which can be seen even in the simple case of φ(t, s) = 1 where
the solution is the cumulative density function for µ.
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Birhäuser, Boston, 2001.

[3] W.W. Schmaedeke, Optimal control theory for nonlinear vector differ-
ential equations containing measures, SIAM J. Control 3, ((1965) no 2,
231-280.

[4] B. Brogliato, Nonsmooth Mechanics. Models, Dynamics and Control, 3rd
edition, Springer-Verlag, Switzerland, 2016.
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