Chemistry 2713 Biochemistry

Winter 2018

Name: _____

Student Number: _____

Midterm Exam #1

Answer all questions on the test. Each multiple choice question has a value of two points and must be answered in pencil on the bubble sheet provided. The value for each short answer question is given with the questions.

The final page of the exam has equations and other relevant information. Feel free to remove this page, but the rest of the midterm and the bubble sheet must be submitted to receive marks for all questions.

Programmable calculators are not allowed.

1																	18
1																	2
H 1.008	2											13	14	15	16	17	He 4.003
3	4											5	6	7	8	9	10
Li 6.941	Be 9.012											B 10.81	C 12.01	N 14.01	O 16.00	F 19.00	Ne 20.18
11	12											13	14	15	16	17	18
Na 22.99	Mg 24.30	3	4	5	6	7	8	9	10	11	12	AI 26.98	Si 28.09	P 30.97	S 32.06	Cl 35.45	Ar 39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K 39.10	Ca 40.08	Sc 44.96	Ti 47.87	V 50.94	Cr 52.00	Mn 54.94	Fe 55.84	Co 58.93	Ni 58.69	Cu 63.55	Zn 65.38	Ga 69.72	Ge 72.64	As 74.92	Se _{78.96}	Br 79.90	Kr 83.80
39.10	38	39	47.87	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb 85.47	Sr 87.62	Y 88.91	Zr 91.22	Nb 92.91	Mo 95.96	Tc (98)	Ru 101.1	Rh 102.9	Pd 106.4	Ag 107.9	Cd	In 114.8	Sn 118.7	Sb 121.8	Te 127.6	 126.9	Xe 131.3
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs 132.9	Ba 137.3	La 138.9	Hf 178.5	Ta 180.9	W 183.8	Re 186.2	Os 190.2	lr 192.2	Pt 195.1	Au 197.0	Hg 200.6	TI 204.4	Pb 207.2	Bi 209.0	Po (209)	At (210)	Rn (222)
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr (223)	Ra 226.0	Ac 227.0	Rf (265)	Db (268)	Sg (271)	Bh (270)	Hs (277)	Mt (276)	Ds (281)	Rg (280)	Cn (285)	Nh (284)	FI (289)	Mc (288)	Lv (293)	Ts (294)	Og (294)

Multiple Choice	/70
Drawing	/25
Bonus	/5
Total	/95

The molecule shown below *does not* contain a/an ______ functional group.

- a. alcohol
- b. carbonyl
- c. ester
- d. ether
- e. ketone

Question 2

The functional group circled in the molecule is a/an:

- a. alcohol
- b. aldehyde
- c. amide
- d. amine
- e. ether

Question 3

Aromatic molecules follow what pattern of the number of electrons in their π -electron cloud?

- a. 2n
- b. 2n+2
- c. 2n+4
- d. 4n
- e. 4n+2

Which of the following molecules is aromatic?

- a. A
- b. B
- c. C
- d. D
- e. none of the molecules are aromatic

Question 5

What type of mechanism is shown by the following reaction scheme:

- $a. \quad S_N \mathbf{1}$
- b. $S_N 2$
- c. E1
- d. E1cb
- e. E2

Question 6

What type of mechanism is shown by the following reaction scheme:

- c. E1
- d. E1cb
- e. E2

What type of mechanism is shown by the following reaction scheme:

Question 8

Cytosine, shown below, is an example of what class of organic base?

- a. purines
- b. purimides
- c. pyridines
- d. pyrimidines
- e. pyrroles

Question 9

Polypeptides are an example of what type of molecule?

- a. carbohydrates
- b. clathrates
- c. DNA
- d. macromolecules
- e. metabolites

Peptide bonds are formed through condensation reactions between

- a. amides and amines
- b. amides and carboxylic acids
- c. amines and carboxylic acids
- d. amines and esters
- e. carboxylic acids and esters

Question 11

Organisms that obtain energy by degrading food molecules obtained by consuming other organisms are called:

- a. anabolic
- b. autotrophs
- c. catabolic
- d. heterotrophs
- e. foodtrophs

Question 12

The metabolic pathway that involves the degradation of large, complex molecules into smaller, simpler products is called:

- a. anabolic
- b. autotropic
- c. catabolic
- d. heterobolic
- e. syntholic

Question 13

Molecules that have both an affinity towards water (water-loving) and are repelled by water are called:

- a. aquatropic
- b. hydrophobic
- c. hydrophilic
- d. amphipathic
- e. ambiphilic

Question 14

When small amounts of fatty acids salts are added to water, ______ form(s).

- a. macromolecules
- b. clathrates
- c. micelles
- d. osmosis
- e. zeolytes

When cells are in a solution with higher solute concentration than in the cells, this is known as a(n) ______ solution.

- a. equitonic
- b. hypertonic
- c. hypotonic
- d. isotonic
- e. subtonic

Question 16

Rank the following bases by decreasing base strength:

- a. Aniline > Diethylamine > Ethylamine > Pyridine
- b. Diethylamine > Ethylamine > Aniline > Pyridine
- c. Diethylamine > Ethylamine > Pyridine > Aniline
- d. Ethylamine > Diethylamine > Aniline > Pyridine
- e. Ethylamine > Diethylamine > Pyridine > Aniline

Question 17

Rank the following types of non-covalent bonding by the strength of the interaction:

Dipole-Dipole Dipole-Induced Dipole Hydrogen Bonds Induced Dipole-Induced Dipole

- a. Dipole-Dipole > Dipole-Induced Dipole > Induced Dipole-Induced Dipole > Hydrogen Bonds
- b. Induced Dipole-Induced Dipole > Dipole-Induced Dipole > Dipole-Dipole > Hydrogen Bonds
- c. Hydrogen Bonds > Dipole-Dipole > Dipole-Induced Dipole > Induced Dipole-Induced Dipole
- d. Hydrogen Bonds > Induced Dipole-Induced Dipole > Dipole-Induced Dipole > Dipole-Dipole
- e. Dipole-Dipole > Dipole-Induced Dipole > Hydrogen Bonds > Induced Dipole-Induced Dipole

Question 18

When blood pH falls below 7.35, a condition called _____ occurs.

- a. acidosis
- b. acidphilic
- c. alkaphilic
- d. alkalosis
- e. acidalkosis

Which of the following is one of the important buffers in our bodies?

- a. acetate buffer
- b. bicarbonate buffer
- c. carbonate buffer
- d. carbohydrate buffer
- e. none of the above are important physiological buffers

Question 20

Ammonium chloride, NH₄Cl, is an example of a:

- a. strong acid
- b. strong base
- c. weak acid
- d. weak base
- e. buffer

Question 21

Which weak acid/conjugate base pair would be the best choice for a buffer with a pH of 4.0?

- a. acetic acid / acetate
- b. benzoic acid / benzoate
- c. formic acid / formate
- d. lactic acid / lactate
- e. propanoic acid / propanoate

Question 22

A semipermeable membrane separates two aqueous solutions X and Y at 20 °C. Determine the net flow of water (if any). Assume 100% dissociation for salts.

Solution X: 0.3 M Al(NO₃)₃

Solution Y: 0.4 M Mg(NO₃)₂

- a. towards X
- b. towards Y
- c. towards both X and Y
- d. no net flow
- e. need more data

Based on the pK_a values given below, what will be the major form of lysine at pH 9?

- a. A
- b. B
- c. C
- d. D
- e. E

Question 24

Asparagine is a polar amino acid, shown below at pH 7. What is the maximum theoretical number of water molecules that one asparagine molecule at pH 7 can hydrogen bond with (assuming they all fit)?

- a. 5
- b. 7
- c. 10
- d. 13
- e. 15

If a weak acid is titrated with a strong base, the pH at the equivalence point will be:

- a. 1
- b. <7
- c. 7
- d. >7
- e. more information is needed

Question 26

Given that blood exerts an osmotic pressure of 7.64 atm, adding blood to which if the following dilute NaCl solutions would result in an isotonic solution at 37 °C? (assume complete ionization)

- a. 0.05 M
- b. 0.15 M
- c. 0.30 M
- d. 0.60 M
- e. 1.85 M

$$m = iMRT$$

$$M = \frac{\pi}{iRT} = \frac{7.64 \ atm}{(2)(0.08206 \ L \cdot bar \cdot K^{-1} \cdot mol^{-1})(37 + 273K)} = 0.150 \ mol \cdot L^{-1}$$

Question 27

Bovine serum albumin (BSA) is a biochemically useful protein. A 0.296 gram sample of bovine serum albumin is dissolved in water to make 150 mL of solution, and the osmotic pressure of the solution at 25 °C is found to be 0.736 mbar. Calculate the molecular mass of bovine serum albumin.

- a. 70 g mol⁻¹
- b. 5600 g mol⁻¹
- c. 12,000 g mol⁻¹
- d. 66,000 g mol⁻¹
- e. 410,000 g mol⁻¹

$$\pi = iMRT$$

$$M = \frac{\pi}{iRT} = \frac{0.736 \times 10^{-3} bar}{(1)(0.08314 L \cdot bar \cdot K^{-1} \cdot mol^{-1})(25 + 273K)} = 2.97 \times 10^{-5} mol \cdot L^{-1}$$

$$C = n/V$$

$$n = C \times V = (2.97 \times 10^{-5} mol \cdot L^{-1})(0.150L) = 4.46 \times 10^{-6} mol$$

$$MM = \frac{m}{n} = \frac{0.296g}{4.46 \times 10^{-6} mol} = 66,427g \cdot mol^{-1}$$

On average, the pH of ketchup is 3.9. What is the average hydrogen ion concentration [H⁺] in ketchup?

- a. 3.90×10^{-7} M b. 3.90×10^{-5} M c. 1.26×10^{-4} M d. 1.00×10^{-3} M
- e. 7.90 × 10⁻³ M

$$pH = -\log[H^+]$$

 $[H^+] = 10^{-pH} = 1.26 \times 10^{-4}M$

Question 29

What is the pH of a buffer containing 1.30 M phenol and 1.20 M sodium phenolate?

- a. 4.11
- b. 8.89
- c. 9.86
- d. 9.89
- e. 9.92

$$pH = pKa + \log \frac{[base]}{[acid]} = 9.89 + \log \frac{1.2}{1.3} = 9.89 - 0.03 = 9.86$$

What is the pH of a 0.500 M formic acid, HCOOH, solution?

- a. 0.30
- b. 1.72
- c. 2.03
- d. 3.45
- e. 3.75

	HA	⇆	H+	+	A ⁻	
i	0.500		0		0	
С	-x		+x		+x	
е	0.500 – x		х		х	

$$\begin{split} K_a &= 1.78 \times 10^{-4} = \frac{x^2}{0.500 - x} \approx \frac{x^2}{0.500} \\ check \ assumption: \frac{[HA]_{init}}{K_a} &= \frac{0.500}{1.78 \times 10^{-4}} = 2809 > 400 \ \therefore \ valid \ assumption \\ x^2 &= (1.78 \times 10^{-4})(0.500) = 8.90 \times 10^{-5} \\ x &= 9.43 \times 10^{-3} M = [H^+] \end{split}$$

 $pH = -\log[H^+] = -\log 9.43 \times 10^{-3} = 2.03$

Question 31

What is the pH of a 1.0 M sodium hydrogen tartrate, Na[HO₂CCH(OH)CH(OH)CO₂], solution?

- a. 2.20
- b. 2.89
- c. 3.64
- d. 4.40
- e. 7.29

monodeprotonated diprotic acid \rightarrow pH is the average of pK_a values

$$pH = \frac{pK_{a1} + pK_{a2}}{2} = \frac{2.89 + 4.40}{2} = 3.64$$

If a 0.25 M buffer solution of acetic acid and sodium acetate has a pH of 4.45, what is the concentration of acetate?

- a. 0.062 M
- b. 0.082 M
- c. 0.12 M
- d. 0.17 M
- e. 0.23 M

$$pH = 4.45 = pKa + \log \frac{[base]}{[acid]} = 4.76 + \log \frac{[base]}{[acid]}$$
$$-0.31 = \log \frac{[base]}{[acid]}$$
$$\frac{[base]}{[acid]} = 10^{-0.31} = 0.4898$$

let x = [base] *and* [acid] = 0.25 - x

$$\frac{x}{0.25 - x} = 0.4898$$

$$x = 0.4898(0.25 - x) = 0.1224 - 0.4898x$$

$$1.4898x = 0.1224$$

$$x = 0.082M = [base]$$

$$[acid] = 0.25 - x = 0.25 - 0.082 = 0.168M$$

Question 33

Calculate the pH during the titration of 25.00 mL of 0.1000 M NH₃ with 0.1000 M HCl solution after 25.00 mL of titrant has been added. The p K_b for ammonia is 4.75.

- a. 2.87
- b. 3.02
- c. 3.67
- d. 5.13
- e. 5.28

 $mol \ weak \ base = (0.1000M)(0.02500L) = 0.0025mol \ mol \ strong \ acid = (0.1000M)(0.02500L) = 0.0025mol$

	В	+	H ⁺	\rightarrow	HB^+
i	0.0025		0.0025		0
С	-0.0025		-0.0025		+0.0025
f	0		0		0.0025

only weak acid remains \rightarrow use ICE table

$[HB^+]$	$\left[- \right] = \frac{m}{total v}$	ol polume =	= 0.0025 0.050	$\frac{mol}{DL} =$	= 0.0500 <i>M</i>		
	HA	⇆	H⁺	+	A-		
i	HA 0.050 -x 0.050 - x		0		0		
С	—x		+x		+x		
е	0.050 – x		х		х		
$K_a = 10^{-pK_a}$ check assumption: $\frac{[HA]}{H}$ x^2	$= (5.62 \times 1)$	$p - pK_b = 5.62 \times 0.0500$ 2×10^{-10} $(0.5.30 \times 10^{-10})$.0500) =	= 2.81	9.25 x^{2} $500 - x \approx 10^{-11}$	x ² 0.0500 valid assumpt	ion

 $pH = -\log[H^+] = -\log 5.30 \times 10^{-6} = 5.28$

Question 34

Calculate the pH during the titration of 50.00 mL of 0.1000 M formic acid with 0.1000 M KOH solution after 60.00 mL of titrant has been added.

- a. 11.00
- b. 11.10
- c. 11.96
- d. 12.22
- e. 12.30

 $mol \ weak \ base = (0.1000M)(0.05000L) = 0.0050mol$ $mol \ strong \ acid = (0.1000M)(0.06000L) = 0.0060mol$

	HA	+	OH⁻	\rightarrow	Α-
i	0.0050		0.0060		0
с	-0.0050		-0.0050		+0.0050
f	0		0.0010		0.0050

excess strong base \rightarrow strong base determines pH

 $[OH^{-}] = \frac{mol}{total \ volume} = \frac{0.0010mol}{0.110L} = 0.00909M$ $pOH = -\log[OH^{-}] = -\log 0.00909 = 2.04$ pH = 14 - pOH = 14 - 2.04 = 11.96

A solution of an unknown monoprotic acid has an equilibrium concentration of 7.69 \times 10⁻⁷ M of undissociated acid (i.e., HA) a pH of 5.50. What is the identity of the acid?

- a. acetic acid
- b. butanoic acid
- c. formic acid
- d. lactic acid
- e. propanoic acid

$$[H^+] = 10^{-pH} = 10^{-5.50} = 3.16 \times 10^{-6} = [A^-]$$

$$K_a = \frac{[H^+][A^-]}{[HA]} = \frac{(3.16 \times 10^{-6})(3.16 \times 10^{-6})}{7.69 \times 10^{-7}} = 1.30 \times 10^{-5} = K_a(propanoic \ acid)$$

Question 36 (5 points)

Sketch a rough titration curve of a weak base with strong acid. Label the axes, identify the equivalence point and the optimal buffer region.

Question 38 (5 points)

Draw the Lewis structure of nitromethane, CH₃NO₂, including all resonance structures.

Bonus Question (5 points)

Draw the E2 mechanism for the reaction of 1-bromopropane with methoxide.

Potentially Useful Information

Equations

$$pH = -\log [H^+] \qquad K_w = [H^+][OH^-] \qquad \pi = iMRT$$

$$pOH = -\log [OH^-] \qquad K_w = K_a \times K_b$$

$$pK_w = pH + pOH \qquad pK_a = -\log K_a$$

$$pK_w = pKa + pK_b \qquad pK_b = -\log K_b$$

$$K_a = \frac{[H^+][A^-]}{[HA]} \qquad K_b = \frac{[HB^+][OH^-]}{[B]} \qquad pH = pK_a + \log \frac{[A^-]}{[HA]}$$

<u>Constants</u>

	0.08206 L·atm·K ⁻¹ ·mol ⁻¹
Gas Constant, R	0.08314 L·bar·K ⁻¹ ·mol ⁻¹
	8.314 J mol ⁻¹ K ⁻¹
Ion Product of Water at 25 °C, K_w	1.0×10^{-14}

Dissociation Constants and pKa Values for Selected Monoprotic Weak Acids

Weak Acid	Ka	p <i>K</i> a
Acetic Acid, CH₃COOH	1.76×10^{-5}	4.76
Benzoic Acid, C ₆ H ₅ COOH	6.31×10^{-5}	4.20
Butanoic Acid, CH ₃ CH ₂ CH ₂ CH ₂ COOH	1.54×10^{-5}	4.81
Formic Acid, HCOOH	1.78×10^{-4}	3.75
Lactic Acid, CH ₃ CH(OH)COOH	1.38×10^{-4}	3.86
Phenol, C ₆ H₅OH	1.28×10^{-10}	9.89
Propanoic Acid, CH ₃ CH ₂ COOH	1.30×10^{-5}	4.89

Dissociation Constants and pKa Values for Selected Diprotic Weak Acids

Acid	Kal	K _{a2}	р <i>К</i> а1	p <i>K</i> _{a2}
Ascorbic Acid, C ₆ H ₈ O ₆	1.0 × 10 ⁻⁵	5.0×10^{-12}	5.00	11.30
Carbonic Acid, H ₂ CO ₃	4.5×10^{-7}	5.61×10^{-11}	6.35	10.33
Malonic Acid, HOOCCH ₂ COOH	1.4×10^{-3}	2.0×10^{-6}	2.85	5.70
Succinic Acid, HOOC(CH ₂) ₂ COOH	6.2 × 10 ^{−5}	2.3 × 10 ⁻⁶	4.21	5.64
Tartaric Acid, HOOCCH(OH)CH(OH)COOH	1.3×10^{-3}	4.0×10^{-5}	2.89	4.40