Born-Haber Cycles


Use Born-Haber cycles to the determine the lattice energy for each salt.
Thermodynamic Data for Selected Atoms, Ions and Salts:
Sublimation Energy, ΔsubH
Vaporisation Energy, ΔvapH
Ionisation Energy, ΔieH
Dissociation Energy, ΔdisH
Electron Affinity (Gain) Energy, ΔeaH
Enthalpy (Heat) of Formation, ΔfH
1. KCl
2. MgO
3. Na2S
4. Al2O3
5. CaF2

 

Return to Topics List

 

Solutions


  
1.
      ΔfH  
K(s) + 1/2Cl2(g) KCl
  ΔsubH     ΔdisH      
K(g)   Cl(g)      
  ΔieH     ΔeaH     U
K+(g)   Cl(g)      
               


ΔfH = ΔsubH + ΔieH + 1/2×ΔdisH + ΔeaH + U

U = ΔfH − [ΔsubH + ΔieH + 1/2×ΔdisH + ΔeaH]

U = −436 − [(89) + (419) + 1/2(243) + (−349)]

U = −716 kJ mol−1

   
   
  
2.
      ΔfH  
Mg(s) + 1/2O2(g) MgO
  ΔsubH     ΔdisH      
Mg(g)   O(g)      
  ΔieH     ΔeaH     U
Mg2+(g)   O2−(g)      
               


ΔfH = ΔsubH + ΔieH + 1/2×ΔdisH + ΔeaH + U

U = ΔfH − [ΔsubH + ΔieH + 1/2×ΔdisH + ΔeaH]

U = −602 − [(147) + (738 + 1451) + 1/2(498) + (−141 + 844)]

U = −3890 kJ mol−1

   
   
  
3.
      ΔfH  
2Na(s) + S(s) Na2S
  ΔsubH     ΔsubH      
2Na(g)   S(g)      
  ΔieH     ΔeaH     U
2Na+(g)   S2−(g)      
               


ΔfH = 2×ΔsubH + 2×ΔieH + ΔsubH + ΔeaH + U

U = ΔfH − [2×ΔsubH + 2×ΔieH + ΔsubH + ΔeaH]

U = −365 − [2(108) + 2(496) + (277) + (−200 + 649)]

U = −2299 kJ mol−1

   
   
  
4.
      ΔfH  
2Al(s) + 3/2O2(g) Al2O3
  ΔsubH     ΔdisH      
2Al(g)   3O(g)      
  ΔieH     ΔeaH     U
2Al3+(g)   3O2−(g)      
               

ΔfH = 2×ΔsubH + 2×ΔieH + 3/2ΔdisH + 3×ΔeaH + U

U = ΔfH − [2×ΔsubH + 2×ΔieH + 3/2ΔdisH + 3×ΔeaH]

U = −1676 − [2(330) + 2(578 + 1817 + 2745) + 3/2(498) + 3(−141 + 844)]

U = −15,472 kJ mol−1

   
   
  
5.
      ΔfH  
Ca(s) + F2(g) CaF2
  ΔsubH     ΔdisH      
Ca(g)   2F(g)      
  ΔieH     ΔeaH     U
Ca2+(g)   2F(g)      
               


ΔfH = ΔsubH + ΔieH + ΔdisH + 2×ΔeaH + U

U = ΔfH − [ΔsubH + ΔieH + ΔdisH + 2×ΔeaH]

U = −1228 − [(178) + (590 + 1145) + (159) + 2(−328)]

U = −2644 kJ mol−1

   
   
  

 

Return to Topics List